Latent Semantic Analysis of the Languages of Life

  • Ryan Anthony Rossi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 51)


We use Latent Semantic Analysis as a basis to study the languages of life. Using this approach we derive techniques to discover latent relationships between organisms such as significant motifs and evolutionary features. Doubly Singular Value Decomposition is defined and the significance of this adaptation is demonstrated by finding a phylogeny of twenty prokaryotes. Minimal Killer Words are used to define families of organisms from negative information. The application of these words makes it possible to automatically retrieve the coding frame of a sequence from any organism.


Languages of Life Motifs Phylogeny Minimal Killer Words Doubly Singular Value Decomposition Latent Semantic Analysis Cross Language Information Retrieval Knowledge Discovery Data Mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)CrossRefGoogle Scholar
  2. 2.
    Landauer, T.K., Littman, M.L.: Fully automatic cross language document retrieval using latent semantic indexing. In: Cross Language Information Retrieval. Kluwer, Dordrecht (1998)Google Scholar
  3. 3.
    Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JSIS 41(6), 391–407 (1990)CrossRefGoogle Scholar
  4. 4.
    Lemaire, B.: Tutoring Systems Based on LSA. AIED, 527–534 (1999)Google Scholar
  5. 5.
    Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97, 10101–10106 (2000)CrossRefGoogle Scholar
  6. 6.
    Kintsch, W.: Comprehension: A Paradigm for Cognition. Cambridge University Press, Cambridge (1998)Google Scholar
  7. 7.
    Lassez, J.-L., Rossi, R., Jeev, K.: Ranking Links on the Web: Search and Surf Engines. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 199–208. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lassez, J.-L., Rossi, R., Sheel, S., Mukkamala, S.: Signature Based Intrusion Detection System using Latent Semantic Analysis. IJCNN, 1068–1074 (2008)Google Scholar
  9. 9.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)CrossRefGoogle Scholar
  10. 10.
    Berry, M., Browne, M.: Understanding Search Engines: Mathematical Modeling and Text Retrieval. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  11. 11.
    Lassez, J.-L., Rossi, R.A., Bernal, A.E.: Crick’s Hypothesis Revisited: The Existence of a Universal Coding Frame. AINA/BLSC, 745–751 (2007)Google Scholar
  12. 12.
    Lassez, J.-L.: Circular Codes and Synchronization. IJCIS 5, 201–208 (1976)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ryan Anthony Rossi
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations