Advertisement

Information Hypothesis: On Human Information Capability Study

  • Jiří Krajíček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5819)

Abstract

Main aim of this paper is to explore the human information capabilities with link to open problems in computer science. We come with working hypothesis reflecting currently known research experimental evidence of human information capabilities. As every hypothesis, presented hypothesis needs further verification to show confirmation or disconfirmation in result. Nevertheless, this work opens novel topic on scientific research with the aim to resolve presented open problems and review of classical paradigm in computer science.

Keywords

Turing Machine Biological Neural Network Adiabatic Quantum Information Hypothesis Adiabatic Quantum Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Ahn, L., et al.: CAPTCHA: Using Hard AI Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Asanovic, K., Bodik, R., et al.: The Landscape of Parallel Computing Re-search: A View from Berkeley, white paper (2006)Google Scholar
  4. 4.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proc. 25th Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM, New York (1993)Google Scholar
  5. 5.
    Braich, et al: Solution of a 20-variable 3-SAT problem on a DNA computer. Scienceexpress (2002)Google Scholar
  6. 6.
    Leiserson, C.E., Mirman, I.B.: How to Survive the Multicore Software Revolution, Cilk Arts, white paper (2008)Google Scholar
  7. 7.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of Lon-don A400 (1985)Google Scholar
  8. 8.
    Feyman, R.P.: Feyman Lectures on Computation. In: Hey, A., Allen, R. (eds.) Penguin Books, pp. 182–183 (1996)Google Scholar
  9. 9.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996)Google Scholar
  10. 10.
    Hameroff, S.: Funda-Mentality: is the conscious mind subtly linked to a basic level of the Universe? Trends Cognitive Science 2, 4–6 (1998)CrossRefGoogle Scholar
  11. 11.
    Hameroff, S.: The Brain Is Both Neurocomputer and Quantum Computer. Cognitive Science Society 31, 1035–1045 (2007)CrossRefGoogle Scholar
  12. 12.
    Hu, H., Wu, M.: Nonlocal effects of chemical substances on the brain produced through quantum entanglement. Progress in Physics 3, 20–26 (2006)Google Scholar
  13. 13.
    Jahn, R.B.: On the Quantum Mechanics of Consciousness, with Application to Anomalous Phenomena. Foundations of Physics 16, 721–772 (1986)CrossRefGoogle Scholar
  14. 14.
    Jung, C.G.: Psychic conflicts in a child. In: Collected Works of C. G. Jung, vol. 17. Princeton University Press, Princeton (1970)Google Scholar
  15. 15.
    Kaminsky, W.M., Lloyd, S.: Scalable Architecture for Adiabatic Quantum Computing of NP-Hard. In: Quantum Computing & Quantum Bits in Mesoscopic Systems. Kluwer Academic, Dordrecht (2003)Google Scholar
  16. 16.
    Kampis, G.: Self-Modifying systems in biology and cognitive science. Pergamon Press, New York (1991)Google Scholar
  17. 17.
    Krajicek, J.: A Note on Application of Natural Phenomena in Computer Science. In: Proceedings of the 14th Conference EEICT 2008, vol. 4, pp. 1–5 (2008)Google Scholar
  18. 18.
    Khrennikov, A.: Quantum-like model of cognitive decision making and information processing. Biosystems 95(3), 179–187 (2009)CrossRefGoogle Scholar
  19. 19.
    Lommel, P., et al.: Near-death experience in survivors of cardiac arrest: a prospective study in the Netherlands. The Lancet (2001)Google Scholar
  20. 20.
    Lucas, J.R.: Minds, machines and Gödel. In: Anderson, A.R. (ed.), Minds and Machines, pp. 43–59. Prentice-Hall, Englewood Cliffs (1954)Google Scholar
  21. 21.
    Miller, J., et al.: An Evolutionary System using Development and Artificial Genetic Regulatory Networks. In: 9th IEEE Congress on Evolutionary Computation (CEC 2008), pp. 815–822 (2008)Google Scholar
  22. 22.
    Moor, G.: Lithography and the future of Moor’s Law. In: Proceeding SPIE, vol. 2439, pp. 2–17 (1995)Google Scholar
  23. 23.
    Neven, H., et al.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, eprint arXiv:0804.4457 (2008)Google Scholar
  24. 24.
    Norman, D.: The Design of Everyday Things. Doubleday Business (1990)Google Scholar
  25. 25.
    Qiyang, C.: Human Computer Interaction: Issues and Challenges. Idea Group Publishing (2001)Google Scholar
  26. 26.
    Sheldrake, R.: An experimental test of the hypothesis of formative causation. Rivista di Biologia – Biology Forum 86, 431–444 (1992)Google Scholar
  27. 27.
    Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 20–22 (1994)Google Scholar
  28. 28.
    Stepney, S.: Jourenyes in non-classical computation, I: A grand challenge for computing research. The international Journal of Parallel, Emergent and Distributive Systems 20(1), 1–9 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Penrose, R.: The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of Physics. Oxford University Press, Oxford (1989)zbMATHGoogle Scholar
  30. 30.
    Penrose, R.: Shadows of the Mind: A search for the missing science of consciousness. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  31. 31.
    Pribram, K.H.: Rethinking Neural networks: Quantum Fields and Bio-logical Data. In: Proceedings of the first Appalachian Conference on Behavioral Neurodynamics. Lawrence Erlbaum Associates Publishers Hillsdale, Mahwah (1993)Google Scholar
  32. 32.
    Rocha, A.F., et al.: Can The Human Brain Do Quantum Computing? Medical Hypotheses 63(5), 895–899 (2004)CrossRefGoogle Scholar
  33. 33.
    Rosen, R.: Life Itself: A comprehensive Inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York (1991)Google Scholar
  34. 34.
    Wiedermann, J.: The Turing Machine Paradigm in Contemporary Computing. In: Mathematics Unlimited - 2001 and Beyond, pp. 1139–1155. Springer, Heidelberg (2000)Google Scholar
  35. 35.
    Zenil, H., et al.: On the possible computational power of the human mind. In: Essays on Epistemology, Evolution, and Emergence. World Scientific, Singapore (2006)Google Scholar
  36. 36.
    Wu, M., Hu, M.: Evidence of non-local physical, chemical and biological effects supports quantum brain. NeuroQuantology 4(4), 291–306 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jiří Krajíček
    • 1
  1. 1.Department of Information SystemsFaculty of Information Technology, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations