Relational Properties Expressible with One Universal Quantifier Are Testable

  • Charles Jordan
  • Thomas Zeugmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5792)


In property testing a small, random sample of an object is taken and one wishes to distinguish with high probability between the case where it has a desired property and the case where it is far from having the property. Much of the recent work has focused on graphs. In the present paper three generalized models for testing relational structures are introduced and relationships between these variations are shown.

Furthermore, the logical classification problem for testability is considered and, as the main result, it is shown that Ackermann’s class with equality is testable.


property testing logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, W.: Über die Erfüllbarkeit gewisser Zählausdrücke. Math. Annalen 100, 638–649 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: It’s all about regularity. In: STOC 2006: Proc. 38th Ann. ACM Symp. on Theory of Comput., pp. 251–260. ACM, New York (2006)Google Scholar
  4. 4.
    Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. In: Proc., 46th Ann. IEEE Symp. on Foundations of Comput. Sci., FOCS 2005, Washington, DC, USA, pp. 429–438. IEEE Comput. Soc., Los Alamitos (2005)Google Scholar
  6. 6.
    Alon, N., Shapira, A.: Homomorphisms in graph property testing. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Thomas, R., Valtr, P. (eds.) Topics in Discrete Mathematics. Algorithms and Combinatorics, vol. 26, pp. 281–313. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Alon, N., Shapira, A.: A separation theorem in property testing. Combinatorica 28(3), 261–281 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Büchi, J.R.: Weak second-order arithmetic and finite-automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chockler, H., Kupferman, O.: ω-regular languages are testable with a constant number of queries. Theoret. Comput. Sci. 329(1-3), 71–92 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fischer, E.: The art of uninformed decisions. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001); Columns: Computational ComplexityzbMATHGoogle Scholar
  13. 13.
    Fischer, E., Matsliah, A., Shapira, A.: Approximate hypergraph partitioning and applications. In: Proc. 48th Ann. IEEE Symp. on Foundations of Comput. Sci., FOCS 2007, pp. 579–589. IEEE Comput. Soc., Los Alamitos (2007)Google Scholar
  14. 14.
    Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  15. 15.
    Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32, 302–343 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kolaitis, P.G., Vardi, M.Y.: 0-1 laws and decision problems for fragments of second-order logic. Inf. Comput. 87(1-2), 302–338 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    de Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 183–212. Princeton University Press, Princeton (1956)Google Scholar
  19. 19.
    Lovász, L.: Some mathematics behind graph property testing. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 3–3. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Annalen 76, 447–470 (1915)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    McNaughton, R., Papert, S.: Counter-Free Automata. M.I.T. Press, Cambridge (1971)zbMATHGoogle Scholar
  22. 22.
    Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30(2), 264–286 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rödl, V., Schacht, M.: Property testing in hypergraphs and the removal lemma. In: STOC 2007: Proc. 39th Ann. ACM Symp. on Theory of Comput., pp. 488–495. ACM, New York (2007)Google Scholar
  25. 25.
    Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Handbook of Randomized Computing, vol. II, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  26. 26.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shelah, S.: Decidability of a portion of the predicate calculus. Israel J. Math. 28(1-2), 32–44 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und über Produktations - und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen. Videnskapsselskapets skrifter, I. Mat.-natur kl. (3), 37–71 (1919)Google Scholar
  29. 29.
    Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen. Videnskapsselskapets skrifter, I. Mat.-natur kl. (4), 1–26 (1920)Google Scholar
  30. 30.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Charles Jordan
    • 1
  • Thomas Zeugmann
    • 1
  1. 1.Division of Computer ScienceHokkaido University, N-14, W-9SapporoJapan

Personalised recommendations