OntoCase-Automatic Ontology Enrichment Based on Ontology Design Patterns

  • Eva Blomqvist
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

OntoCase is a framework for semi-automatic pattern-based ontology construction. In this paper we focus on the retain and reuse phases, where an initial ontology is enriched based on content ontology design patterns (Content ODPs), and especially the implementation and evaluation of these phases. Applying Content ODPs within semi-automatic ontology construction, i.e. ontology learning (OL), is a novel approach. The main contributions of this paper are the methods for pattern ranking, selection, and integration, and the subsequent evaluation showing the characteristics of ontologies constructed automatically based on ODPs. We show that it is possible to improve the results of existing OL methods by selecting and reusing Content ODPs. OntoCase is able to introduce a general top structure into the ontologies, and by exploiting background knowledge the ontology is given a richer overall structure.

References

  1. 1.
    Brewster, C., Ciravegna, F., Wilks, Y.: Background and foreground knowledge in dynamic ontology construction. In: Proc. Semantic Web Workshop, SIGIR (2003)Google Scholar
  2. 2.
    Cimiano, P.: Ontology Learning and Population from Text - Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Cimiano, P., Buitelaar, P., Magnini, B. (eds.): Ontology Learning and from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)Google Scholar
  4. 4.
    Ciaramita, M., Gangemi, A., Ratsch, E., Rojas, I., Saric, J.: Unsupervised learning of semantic relations between concepts of a molecular biology ontology. In: Proceedings of IJCAI 2005 (2005)Google Scholar
  5. 5.
    Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Proceedings of the 4th European Semantic Web Conference, Innsbruck (2007)Google Scholar
  7. 7.
    Völker, J., Haase, P., Hitzler, P.: Learning expressive ontologies. In: Ontology Learning and Population: Bridging the Gap between Text and Knowledge. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2008)Google Scholar
  8. 8.
    Coppola, B., Gangemi, A., Gliozzo, A., Picca, D., Presutti, V.: Frame detection over the semantic web. In: Proc. of ESWC 2009. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies, 2nd edn. International Handbooks on Information Systems. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proc. of the Fourth International Semantic Web Conference, Galway. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Presutti, V., Gangemi, A.: Content ontology design patterns as practical building blocks for web ontologies. Proc. of ER 2008, 128–141 (2008)Google Scholar
  12. 12.
    Blomqvist, E.: Semi-automatic Ontology Construction based on Patterns. PhD thesis, Linköping University, Department of Computer and Information Science at the Institute of Technology (2009)Google Scholar
  13. 13.
    Alani, H., Brewster, C.: Ontology Ranking based on the Analysis of Concept Structures. In: Proceedings of KCAP 2005, Banff, Alberta, Canada (October 2005)Google Scholar
  14. 14.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  15. 15.
    Svab-Zamazal, O., Svatek, V.: Analysing ontological structures through name pattern tracking. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 213–228. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Hay, D.C.: Data Model Patterns - Conventions of Thought. Dorset House (1996)Google Scholar
  17. 17.
    Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Qood grid: A metaontology-based framework for ontology evaluation and selection. In: Proc. of the 4th International EON Workshop, Located at WWW (2006)Google Scholar
  18. 18.
    Yao, H., Orme, A.M., Etzkorn, L.: Cohesion Metrics for Ontology Design and Application. Journal of Computer Science 1(1), 107–113 (2005)CrossRefGoogle Scholar
  19. 19.
    Gómez-Pérez, A.: Evaluation of Taxonomic Knowledge in Ontologies and Knowledge Bases. In: Proc. of KAW 1999, Banff, vol.2 (1999)Google Scholar
  20. 20.
    Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. Communications of the ACM 45(2), 61–65 (2002)CrossRefGoogle Scholar
  21. 21.
    Lozano-Tello, A., Gómez-Pérez, A.: ONTOMETRIC: A Method to Choose the Appropriate Ontology. Journal of Database Management 15(2) (April-June 2004)Google Scholar
  22. 22.
    Billig, A., Sandkuhl, K.: Enterprise ontology based artefact management. GI Jahrestagung P134, 681–687 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eva Blomqvist
    • 1
  1. 1.StLabISTC-CNRRomaItaly

Personalised recommendations