A Generic Approach for Large-Scale Ontological Reasoning in the Presence of Access Restrictions to the Ontology’s Axioms

  • Franz Baader
  • Martin Knechtel
  • Rafael Peñaloza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

The framework developed in this paper can deal with scenarios where selected sub-ontologies of a large ontology are offered as views to users, based on criteria like the user’s access right, the trust level required by the application, or the level of detail requested by the user. Instead of materializing a large number of different sub-ontologies, we propose to keep just one ontology, but equip each axiom with a label from an appropriate labeling lattice. The access right, required trust level, etc. is then also represented by a label (called user label) from this lattice, and the corresponding sub-ontology is determined by comparing this label with the axiom labels. For large-scale ontologies, certain consequence (like the concept hierarchy) are often precomputed. Instead of precomputing these consequences for every possible sub-ontology, our approach computes just one label for each consequence such that a comparison of the user label with the consequence label determines whether the consequence follows from the corresponding sub-ontology or not.

In this paper we determine under which restrictions on the user and axiom labels such consequence labels (called boundaries) always exist, describe different black-box approaches for computing boundaries, and present first experimental results that compare the efficiency of these approaches on large real-world ontologies. Black-box means that, rather than requiring modifications of existing reasoning procedures, these approaches can use such procedures directly as sub-procedures, which allows us to employ existing highly-optimized reasoners.

References

  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of 19th Int. Joint Conf. on Art. Int. IJCAI 2005, Edinburgh, UK. Morgan-Kaufmann, San Francisco (2005)Google Scholar
  2. 2.
    Baader, F., Knechtel, M., Peñaloza, R.: Computing boundaries for reasoning in sub-ontologies. Technical Report 09-02, LTCS (2009), http://lat.inf.tu-dresden.de/research/reports.html
  3. 3.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 226–241. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic and Computation (To appear, 2009)Google Scholar
  6. 6.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \({{\mathcal{EL}}^+}\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\mathcal{EL}^+\). In: Proc. of the International Conference on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix, Arizona (2008)Google Scholar
  8. 8.
    Dau, F., Knechtel, M.: Access policy design supported by FCA methods. In: Dau, F., Rudolph, S. (eds.) Proc. of the 17th Int. Conf. on Conceptual Structures, ICCS (2009)Google Scholar
  9. 9.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  10. 10.
    Gaag, A., Kohn, A., Lindemann, U.: Function-based solution retrieval and semantic search in mechanical engineering. In: Proc. of the 17th Int. Conf. on Engineering Design, ICED 2009 (to appear, 2009)Google Scholar
  11. 11.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes in OWL ontologies. J. Web Sem. 3(4), 268–293 (2005)Google Scholar
  13. 13.
    Lesot, M.-J., Couchariere, O., Bouchon-Meunier, B., Rogier, J.-L.: Inconsistency degree computation for possibilistic description logic: An extension of the tableau algorithm. In: Proc. of NAFIPS 2008, pp. 1–6. IEEE Comp. Soc. Press, Los Alamitos (2008)Google Scholar
  14. 14.
    Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006). AAAI Press/The MIT Press, Menlo Park (2006)Google Scholar
  15. 15.
    Qi, G., Pan, J.Z.: A tableau algorithm for possibilistic description logic. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 61–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 828–839. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schenk, S.: On the semantics of trust and caching in the semantic web. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 533–549. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, Los Altos (2003)Google Scholar
  20. 20.
    Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 212–213 (2004)Google Scholar
  21. 21.
    Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Maintenance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik, TU Dresden (2009), http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franz Baader
    • 1
  • Martin Knechtel
    • 2
  • Rafael Peñaloza
    • 1
  1. 1.Theoretical Computer ScienceTU DresdenGermany
  2. 2.SAP AGSAP Research CEC DresdenGermany

Personalised recommendations