A Conflict-Based Operator for Mapping Revision

Theory and Implementation
  • Guilin Qi
  • Qiu Ji
  • Peter Haase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

Ontology matching is one of the key research topics in the field of the Semantic Web. There are many matching systems that generate mappings between different ontologies either automatically or semi-automatically. However, the mappings generated by these systems may be inconsistent with the ontologies. Several approaches have been proposed to deal with the inconsistencies between mappings and ontologies. This problem is often called a mapping revision problem, as the ontologies are assumed to be correct, whereas the mappings are repaired when resolving the inconsistencies. In this paper, we first propose a conflict-based mapping revision operator and show that it can be characterized by two logical postulates adapted from some existing postulates for belief base revision. We then provide an algorithm for iterative mapping revision by using an ontology revision operator and show that this algorithm defines a conflict-based mapping revision operator. Three concrete ontology revision operators are given to instantiate the iterative algorithm, which result in three different mapping revision algorithms. We implement these algorithms and provide some preliminary but interesting evaluation results.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)MATHGoogle Scholar
  2. 2.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic EL \(^{\mbox{+}}\). In: Proc. of KI, pp. 52–67 (2007)Google Scholar
  3. 3.
    Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer sources. Journal of Data Semantics 1, 153–184 (2003)Google Scholar
  4. 4.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  5. 5.
    Gardenfors, P.: Knowledge in Flux-Modeling the Dynamic of Epistemic States. The MIT Press, Cambridge (1988)Google Scholar
  6. 6.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting modules from ontologies. In: Proc. of WWW, pp. 717–726 (2007)Google Scholar
  7. 7.
    Haase, P., Qi, G.: An analysis of approaches to resolving inconsistencies in DL-based ontologies. In: Proc. of IWOD, pp. 97–109 (2007)Google Scholar
  8. 8.
    Ove Hansson, S.: Reversing the levi identity. Journal of Philosophical Logic 22(6), 637–669 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ove Hansson, S.: Kernel contraction. Journal Symbolic Logic 59(3), 845–859 (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Ove Hansson, S.: A Textbook of Belief Dynamics: Theory Change and Database Updating. Kluwer Academic Publishers, Dordrecht (1999)MATHGoogle Scholar
  11. 11.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proc. of IJCAI, pp. 454–459 (2005)Google Scholar
  12. 12.
    Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology matching. In: Proc. of KI, pp. 99–113 (2007)Google Scholar
  13. 13.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proc. of AAAI, pp. 1408–1413 (2007)Google Scholar
  14. 14.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping revision. Journal of Logic and Computation (2008)Google Scholar
  15. 15.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Nebel, B.: Base revision operations and schemes: Semantics, representation and complexity. In: Proc. of ECAI, pp. 341–345 (1994)Google Scholar
  17. 17.
    Peñaloza, R., Sertkaya, B.: Axiom pinpointing is hard. In: Proc. of DL (2009)Google Scholar
  18. 18.
    Qi, G.: A semantic approach for iterated revision in possibilistic logic. In: Proc. of AAAI, pp. 523–528 (2008)Google Scholar
  19. 19.
    Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator for terminologies — algorithms and evaluation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 419–434. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 828–839. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach to finding all justifications for OWL DL entailments. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their relations with alignment composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guilin Qi
    • 1
    • 2
  • Qiu Ji
    • 1
  • Peter Haase
    • 1
  1. 1.Institute AIFBUniversity of KarlsruheGermany
  2. 2.School of Computer Science and EngineeringSoutheast UniversityNanjing

Personalised recommendations