Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data

  • Daniela Petrelli
  • Suvodeep Mazumdar
  • Aba-Sah Dadzie
  • Fabio Ciravegna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

Semantic formalisms represent content in a uniform way according to ontologies. This enables manipulation and reasoning via automated means (e.g. Semantic Web services), but limits the user’s ability to explore the semantic data from a point of view that originates from knowledge representation motivations. We show how, for user consumption, a visualization of semantic data according to some easily graspable dimensions (e.g. space and time) provides effective sense-making of data. In this paper, we look holistically at the interaction between users and semantic data, and propose multiple visualization strategies and dynamic filters to support the exploration of semantic-rich data. We discuss a user evaluation and how interaction challenges could be overcome to create an effective user-centred framework for the visualization and manipulation of semantic data. The approach has been implemented and evaluated on a real company archive.

Keywords

Semantic Web semantic multimedia data graphical visualization user interaction 

References

  1. 1.
    Aditya, T., Kraak, M.: A Search Interface for an SDI: Implementation and Evaluation of Metadata Visualization Strategies. Transactions in GIS 11(3), 413–435 (2007)CrossRefGoogle Scholar
  2. 2.
    Ahlberg, C., Williamson, C., Shneiderman, B.: Dynamic Queries for Information Exploration: An Implementation and Evaluation. In: CHI 1992, pp. 619–626 (1992)Google Scholar
  3. 3.
    Bhagdev, R., Chakravarthy, A., Chapman, S., Ciravegna, F., Lanfranchi, V.: Creating and Using Organisational Semantic Webs in Large Networked Organisations. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 723–736. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Brodbeck, D., Girardin, L.: Using multiple coordinated views to analyze geo-referenced high-dimensional datasets. In: Proceedings of InfoViz (2003)Google Scholar
  5. 5.
    Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision To Think. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  6. 6.
    Chen, C.: Information Visualization Versus the Semantic Web. In: Geroimenko, V., Chen, C. (eds.). Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Dadzie, A.-S., Bhagdev, R., Chakravarthy, A., Chapman, S., Iria, J., Lanfranchi, V., Magalhães, J., Petrelli, D., Ciravegna, F.: Applying Semantic Web Technologies to Knowledge Sharing in Aerospace Engineering in Journal of Intelligent Manufacturing (June 2008) doi: 10.1007/s10845-008-0141-1Google Scholar
  8. 8.
    Dadzie, A.-S., Lanfranchi, V., Petrelli, D.: Seeing is Believing: Linking Data With Knowledge. Information Visualization Human-centered Information Visualization (September 2009)Google Scholar
  9. 9.
    Deligiannidis, L., Kochut, K., Sheth, A.: RDF Data Exploration and Visualization. In: CISM 2007 (2007)Google Scholar
  10. 10.
    Fan, J., Gao, Y., Luo, H., Keim, D., Li, Z.: A Novel Approach to Enable Semantic and Visual Image Summarization for Exploratory Image Search. In: Proc. of MIR (2008)Google Scholar
  11. 11.
    Geroimenko, V., Chen, C. (eds.): Visualizing the Semantic Web. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Hearst, M.: Search User Interfaces. Cambridge University Press, Cambridge (2009)Google Scholar
  13. 13.
    Hearst, M.: User Interfaces and Visualization. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  14. 14.
    Heer, J., Card, S., Landay, J.: Prefuse: A toolkit for interactive information visualization. In: Proc. CHI 2005, pp. 421–430 (2005)Google Scholar
  15. 15.
    Keim, D.: Information Visualization and Visual Data Mining. IEEE transactions on Visualization and Computer Graphics 8(1) (January-March 2002)Google Scholar
  16. 16.
    Klein, G., Moon, B., Hoffman, R.: Making Sense of Sensemaking 1: Alternative Perspectives. IEEE Intelligent Systems (July/August 2006)Google Scholar
  17. 17.
    Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid Search: Effectively Combining Keywords and Semantic Searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Marchionini, G.: Exploratory Search: From finding to understanding. CAMC 49(4) (2006)Google Scholar
  19. 19.
    Mutton, P., Golbeck, J.: Visualization of Semantic Metadata and Ontologies. In: 7th International Conference on Information Visualization. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  20. 20.
    Oren, E., Delbry, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Petrelli, D., Lanfranchi, V., Moore, P., Ciravegna, F., Cadas, C.: Oh My, Where Is the End of the Context? Dealing with Information in a Highly Complex Environment. 1st IIiX (2006)Google Scholar
  22. 22.
    Petrelli, D.: On the Role of User-Centred Evaluations in the Advancement of Interactive Information Retrieval. In Information Processing and Management 44(1), 22–38 (2008)CrossRefGoogle Scholar
  23. 23.
    Schraefel, M.C., Wilson, M., Russell, A., Smith, D.: mSpace: Improving Information Access to Multimedia Domains with MultiModal Exploratory Search. CACM 49(4), 47–49 (2006)Google Scholar
  24. 24.
    Schraefel, M.C.: Building Knowledge: What’s beyond Keyword Search? IEEE Computer 42(3), 52–59 (2009)Google Scholar
  25. 25.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy of information visualization. In: Bederson, B., Shneiderman, B. (eds.) The craft of information visualization. Morgan Kaufman, San Francisco (2003)Google Scholar
  26. 26.
    Stasko, G., Liu, Z.: Jigsaw: Supporting investigative analysis through interactive visualization. Information Visualization 7(2), 118–132 (2008)CrossRefGoogle Scholar
  27. 27.
    Stern, E.W.: Organizational memory: Review of concepts and recommendations for management. International Journal of Information Management, 17–32 (1995)Google Scholar
  28. 28.
    Stuckenschmidt, H., et al.: Exploring Large Document Repositories with RDF Technology: The DOPE Project, May/June. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  29. 29.
    Thai, V.T., Handschuh, S., Decker, S.: IVEA: An Information Visualization Tool for Personalized Exploratory Document Collection Analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 139–153. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Thai, V.T., Handschuh, S., Decker, S.: Tight Coupling of Personal Interests with Multi-dimensional Visualization for Exploration and Analysis of Text Collections. In: 12th International Conference Information Visualization IEEE, pp. 121–126 (2008)Google Scholar
  31. 31.
    Tu, K.W., Xiong, M., Zhang, L., Zhu, H.P., Zhang, J., Yu, Y.: Towards Imaging Large-Scale Ontologies for Quick Understanding and Analysis. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 702–715. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Van Welie, M., van der Veer, G.C., Eliens, A.: Breaking down Usability. In: Proc. INTERACT 1999, pp. 613–620 (1999)Google Scholar
  33. 33.
    White, R., Marchionini, G., Muresan, G.: Evaluating exploratory search systems. Information Processing Management 44(2), 433–436 (2008)Google Scholar
  34. 34.
    Wilson, M., Schraefel, M.C.: Improving Exploratory Search Interfaces: Adding Values or Information Overload?Google Scholar
  35. 35.
    Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies. ACM Transactions on Graphics (TOG) 21(4), 833–854 (2002)CrossRefGoogle Scholar
  36. 36.
    Perer, A., Shneiderman, B.: Integrating statistics and visualization: case studies of gaining clarity during exploratory data analysis. In: CHI 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniela Petrelli
    • 1
  • Suvodeep Mazumdar
    • 2
  • Aba-Sah Dadzie
    • 2
  • Fabio Ciravegna
    • 2
  1. 1.Department of Information StudiesUniversity of SheffieldSheffieldUK
  2. 2.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations