Advertisement

Automatically Constructing Semantic Web Services from Online Sources

  • José Luis Ambite
  • Sirish Darbha
  • Aman Goel
  • Craig A. Knoblock
  • Kristina Lerman
  • Rahul Parundekar
  • Thomas Russ
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

The work on integrating sources and services in the Semantic Web assumes that the data is either already represented in RDF or OWL or is available through a Semantic Web Service. In practice, there is a tremendous amount of data on the Web that is not available through the Semantic Web. In this paper we present an approach to automatically discover and create new Semantic Web Services. The idea behind this approach is to start with a set of known sources and the corresponding semantic descriptions and then discover similar sources, extract the source data, build semantic descriptions of the sources, and then turn them into Semantic Web Services. We implemented an end-to-end solution to this problem in a system called Deimos and evaluated the system across five different domains. The results demonstrate that the system can automatically discover, learn semantic descriptions, and build Semantic Web Services with only example sources and their descriptions as input.

References

  1. 1.
    Afzal, H., Stevens, R., Nenadic, G.: Mining semantic descriptions of bioinformatics web services from the literature. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 535–549. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Baumgartner, R., Flesca, S., Gottlob, G.: Declarative information extraction, web crawling, and recursive wrapping with lixto. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 21–41. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic annotation of web services based on workflow definitions. ACM Trans. Web 2(2), 1–34 (2008)CrossRefGoogle Scholar
  4. 4.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Carman, M.J., Knoblock, C.A.: Learning semantic definitions of online information sources. Journal of Artificial Intelligence Research (JAIR) 30, 1–50 (2007)zbMATHGoogle Scholar
  6. 6.
    Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity search for web services. In: Proceedings of VLDB (2004)Google Scholar
  7. 7.
    Gazen, B., Minton, S.: Autofeed: an unsupervised learning system for generating webfeeds. In: KCAP 2005: Proceedings of the 3rd international conference on Knowledge capture, pp. 3–10. ACM, New York (2005)CrossRefGoogle Scholar
  8. 8.
    Heß, A., Kushmerick, N.: Learning to attach semantic metadata to Web services. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 258–273. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Heß, A., Kushmerick, N.: Iterative ensemble classification for relational data: A case study of semantic web services. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 156–167. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of UAI, pp. 289–296 (1999)Google Scholar
  11. 11.
    Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for WSDL and XML schema. IEEE Internet Computing 11(6), 60–67 (2007)CrossRefGoogle Scholar
  12. 12.
    Lerman, K., Minton, S., Knoblock, C.: Wrapper maintenance: A machine learning approach. Journal of Artificial Intelligence Research 18, 149–181 (2003)zbMATHGoogle Scholar
  13. 13.
    Lerman, K., Plangprasopchok, A., Knoblock, C.A.: Semantic labeling of online information sources. International Journal on Semantic Web and Information Systems, Special Issue on Ontology Matching 3(3), 36–56 (2007)Google Scholar
  14. 14.
    Levy, A.Y.: Logic-based techniques in data integration. In: Minker, J. (ed.) Logic-Based Artificial Intelligence. Kluwer Publishers, Dordrecht (2000)Google Scholar
  15. 15.
    Perkowitz, M., Doorenbos, R.B., Etzioni, O., Weld, D.S.: Learning to understand information on the Internet: An example-based approach. Journal of Intelligent Information Systems 8, 133–153 (1999)CrossRefGoogle Scholar
  16. 16.
    Plangprasopchok, A., Lerman, K.: Exploiting social annotation for resource discovery. In: AAAI workshop on Information Integration on the Web, IIWeb 2007 (2007)Google Scholar
  17. 17.
    Plangprasopchok, A., Lerman, K.: Modeling social annotation: a bayesian approach. Technical report, Computer Science Department, University of Southern California (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José Luis Ambite
    • 1
  • Sirish Darbha
    • 1
  • Aman Goel
    • 1
  • Craig A. Knoblock
    • 1
  • Kristina Lerman
    • 1
  • Rahul Parundekar
    • 1
  • Thomas Russ
    • 1
  1. 1.Information Sciences InstituteUniversity of Southern CaliforniaMarina del Rey

Personalised recommendations