TripleRank: Ranking Semantic Web Data by Tensor Decomposition

  • Thomas Franz
  • Antje Schultz
  • Sergej Sizov
  • Steffen Staab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)


The Semantic Web fosters novel applications targeting a more efficient and satisfying exploitation of the data available on the web, e.g. faceted browsing of linked open data. Large amounts and high diversity of knowledge in the Semantic Web pose the challenging question of appropriate relevance ranking for producing fine-grained and rich descriptions of the available data, e.g. to guide the user along most promising knowledge aspects. Existing methods for graph-based authority ranking lack support for fine-grained latent coherence between resources and predicates (i.e. support for link semantics in the linked data model). In this paper, we present TripleRank, a novel approach for faceted authority ranking in the context of RDF knowledge bases. TripleRank captures the additional latent semantics of Semantic Web data by means of statistical methods in order to produce richer descriptions of the available data. We model the Semantic Web by a 3-dimensional tensor that enables the seamless representation of arbitrary semantic links. For the analysis of that model, we apply the PARAFAC decomposition, which can be seen as a multi-modal counterpart to Web authority ranking with HITS. The result are groupings of resources and predicates that characterize their authority and navigational (hub) properties with respect to identified topics. We have applied TripleRank to multiple data sets from the linked open data community and gathered encouraging feedback in a user evaluation where TripleRank results have been exploited in a faceted browsing scenario.


Test Person Tensor Decomposition Link Semantic Relevance Ranking Neural Information Processing System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.: Ranking complex relationships on the semantic web. IEEE Internet Computing 9(3), 37–44 (2005)CrossRefGoogle Scholar
  2. 2.
    Andersson, C.A., Bro, R.: The n-way toolbox for matlab. Chemometrics and Intelligent Laboratory Systems 52(1), 1–4 (2000)CrossRefGoogle Scholar
  3. 3.
    Anyanwu, K., Sheth, A.P.: The p operator: Discovering and ranking associations on the semantic web. SIGMOD Record 31(4), 42–47 (2002)CrossRefGoogle Scholar
  4. 4.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search in databases. In: VLDB, pp. 564–575 (2004)Google Scholar
  7. 7.
    Bharat, K., Henzinger, M.R.: Improved Algorithms for Topic Distillation in a Hyperlinked Environment. In: 21st Annual International ACM SIGIR Conference, Melbourne, Australia, pp. 104–111 (1998)Google Scholar
  8. 8.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh International World-Wide Web Conference, WWW 1998 (1998)Google Scholar
  9. 9.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)CrossRefGoogle Scholar
  10. 10.
    Chirita, P.A., Ghita, S., Nejdl, W., Paiu, R.: Beagle++: Semantically enhanced searching and ranking on the desktop. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 348–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Manning, H.S.C., Raghavan, P.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  12. 12.
    Cohn, D.A., Hofmann, T.: The missing link - a probabilistic model of document content and hypertext connectivity. In: 13th Conference on Advances in Neural Information Processing Systems (NIPS), Denver, USA, pp. 430–436 (2000)Google Scholar
  13. 13.
    Diligenti, M., Gori, M., Maggini, M.: Web Page Scoring Systems for Horizontal and Vertical Search. In: 11th International World Wide Web Conference (WWW), Honolulu, USA, pp. 508–516 (2002)Google Scholar
  14. 14.
    Ding, C.H.Q., He, X., Husbands, P., Zha, H., Simon, H.D.: PageRank, HITS and a Unified Framework for Link Analysis. In: 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, pp. 353–354 (2002)Google Scholar
  15. 15.
    Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: In: International Semantic Web Conference, pp. 156–170 (2005)Google Scholar
  16. 16.
    Eirinaki, M., Vazirgiannis, M.: Usage-based pagerank for web personalization. In: IEEE International Conference on Data Mining, pp. 130–137 (2005)Google Scholar
  17. 17.
    Von Eye, A., Mun, E.Y.: Analyzing Rater Agreement: Manifest Variable Methods. Lawrence Erlbaum Associates, Mahwah (2004)Google Scholar
  18. 18.
    Harshman, R.A., Lundy, M.E.: Parafac: Parallel factor analysis. Computational Statistics & Data Analysis 18(1), 39–72 (1994)zbMATHCrossRefGoogle Scholar
  19. 19.
    Haveliwala, T.H.: Topic-sensitive PageRank. In: 11th International World Wide Web Conference (WWW), Honolulu, USA, pp. 517–526 (2002)Google Scholar
  20. 20.
    Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for heterogeneous semantic web repositories. In: international Semantic Web Conference, pp. 272–285 (2006)Google Scholar
  21. 21.
    Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for semantic web data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems (2006)Google Scholar
  22. 22.
    Jeh, G., Widom, J.: Scaling Personalized Web Search. In: 12th International World Wide Web Conference (WWW), Budapest, Hungary, pp. 271–279 (2003)Google Scholar
  23. 23.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Koch, J., Franz, T., Staab, S.: Lena - browsing rdf data more complex than foaf. In: International Semantic Web Conference (ISWC) Demo Session (2008)Google Scholar
  25. 25.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3) (to appear) (September 2009)Google Scholar
  26. 26.
    Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-Order Web Link Analysis Using Multilinear Algebra. In: 5th IEEE International Conference on Data Mining (ICDM), Houston, USA, pp. 242–249 (2005)Google Scholar
  27. 27.
    Lempel, R., Moran, S.: SALSA: the Stochastic Approach for Link-Structure Analysis. ACM Transactions on Information Systems (TOIS) 19(2), 131–160 (2001)CrossRefGoogle Scholar
  28. 28.
    Liu, Y.-T., Gao, B., Liu, T.-Y., Zhang, Y., Ma, Z., He, S., Li, H.: Browserank: letting web users vote for page importance. In: SIGIR, pp. 451–458 (2008)Google Scholar
  29. 29.
    Rafiei, D., Mendelzon, A.O.: What is this Page known for? Computing Web Page Reputations. Computer Networks 33(1-6), 823–835 (2000)CrossRefGoogle Scholar
  30. 30.
    Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informative connection subgraphs in multi-relational graphs. SIGKDD Explor. Newsl. 7(2), 56–63 (2005)CrossRefGoogle Scholar
  31. 31.
    Richardson, M., Domingos, P.: The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank. In: 14th Conference on Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada, pp. 1441–1448 (2001)Google Scholar
  32. 32.
    Rocha, C., Schwabe, D., de Aragão, M.P.: A hybrid approach for searching in the semantic web. In: WWW, pp. 374–383 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Franz
    • 1
  • Antje Schultz
    • 1
  • Sergej Sizov
    • 1
  • Steffen Staab
    • 1
  1. 1.ISWebUniversity of Koblenz-LandauGermany

Personalised recommendations