Advertisement

Connection Strategies in Associative Memory Models with Spiking and Non-spiking Neurons

  • Weiliang Chen
  • Reinoud Maex
  • Rod Adams
  • Volker Steuber
  • Lee Calcraft
  • Neil Davey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5495)

Abstract

The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks.

Keywords

Associative Memory Spiking Neural Network Small World Network Connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calcraft, L., Adams, R., Davey, N.: Gaussian and Exponential Architectures in Small World Associative Memories. In: ESANN, Bruge (2006)Google Scholar
  2. 2.
    Calcraft, L., Adams, R., Davey, N.: Efficient architectures for sparsely-connected high capacity associative memory models. Connection Science 19, 163–175 (2007)CrossRefGoogle Scholar
  3. 3.
    Davey, N., Calcraft, L., Adams, R.: High capacity, small world associative memory models. Connection Science 18, 247 (2006)CrossRefGoogle Scholar
  4. 4.
    Anishchenko, A., Bienenstock, E., Treves, A.: Autoassociative Memory Retrieval and Spontaneous Activity Bumps in Small-World Networks of Integrate-and-Fire Neurons. Submitted to Neural Computation (2005)Google Scholar
  5. 5.
    Bohland, J., Minai, A.: Efficient Associative Memory Using Small-World Architecture. Neurocomputing 38-40, 489–496 (2001)CrossRefGoogle Scholar
  6. 6.
    Watts, D., Strogatz, S.: Collective Dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  7. 7.
    Hellwig, B.: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics 82, 111 (2000)CrossRefGoogle Scholar
  8. 8.
    Davey, N., Hunt, S.P., Adams, R.G.: High capacity recurrent associative memories. Neurocomputing 62, 459–491 (2004)CrossRefGoogle Scholar
  9. 9.
    Kandel, E., Schwartz, J., Jessel, T.: Principles of Neural Science, 4th edn (2000)Google Scholar
  10. 10.
    Calcraft, L.: Measuring the Performance of Associative Memories, University of Hertfordshire, Technical Report 420 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Weiliang Chen
    • 1
  • Reinoud Maex
    • 1
  • Rod Adams
    • 1
  • Volker Steuber
    • 1
  • Lee Calcraft
    • 1
  • Neil Davey
    • 1
  1. 1.University of HertfordshireHertfordshireUK

Personalised recommendations