A Hybrid Solver for Large Neighborhood Search: Mixing Gecode and EasyLocal + + 

  • Raffaele Cipriano
  • Luca Di Gaspero
  • Agostino Dovier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5818)

Abstract

We present a hybrid solver (called \(\mathbb{GELATO}\)) that exploits the potentiality of a Constraint Programming (CP) environment (Gecode) and of a Local Search (LS) framework (EasyLocal + + ). \(\mathbb{GELATO}\) allows to easily develop and use hybrid meta-heuristic combining CP and LS phases (in particular Large Neighborhood Search). We tested some hybrid algorithms on different instances of the Asymmetric Traveling Salesman Problem: even if only naive LS strategies have been used, our meta-heuristics improve the standard CP search, in terms of both goodness of the solution reached and execution time. \(\mathbb{GELATO}\) will be integrated into a more general tool to solve Constraint Satisfaction/Optimization Problems. Moreover, it can be seen as a new library for approximate and efficient searching in Gecode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. John Wiley and Sons, Chichester (1997)MATHGoogle Scholar
  2. 2.
    Cipriano, R., Dovier, A., Mauro, J.: Compiling and executing declarative modeling languages to gecode. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 744–748. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Danna, E., Perron, L.: Structured vs. unstructured large neighborhood search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 817–821. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Di Gaspero, L.: Local Search Techniques for Scheduling Problems: Algorithms and Software Tools. PhD thesis, Univ. di Udine, DIMI (2003)Google Scholar
  5. 5.
    Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software — Practice & Experience 33(8), 733–765 (2003)CrossRefGoogle Scholar
  6. 6.
    Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 369–403. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  7. 7.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)MATHGoogle Scholar
  8. 8.
    Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based heuristic. Artificial Intelligence 139(1), 21–45 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Monfroy, E., Saubion, F., Lambert, T.: On hybridization of local search and constraint propagation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 299–313. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Swedish Institute of Computer Science. Sicstus prolog, http://www.sics.se/isl/sicstuswww/site/index.html
  12. 12.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)MATHGoogle Scholar
  13. 13.
    Gecode Team. Gecode: Generic constraint development environment, http://www.gecode.org
  14. 14.
    Institut für Informatik Universität Heidelberg. Tsplib, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  15. 15.
    Various Authors. CP-AI-OR conference series, http://www.cpaior.org/
  16. 16.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raffaele Cipriano
    • 1
  • Luca Di Gaspero
    • 2
  • Agostino Dovier
    • 1
  1. 1.DIMIItaly
  2. 2.DIEGMUniversità di UdineUdineItaly

Personalised recommendations