Advertisement

A 2-Round Anonymous Veto Protocol

  • Feng Hao
  • Piotr Zieliński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5087)

Abstract

The dining cryptographers network (or DC-net) is a seminal technique devised by Chaum to solve the dining cryptographers problem — namely, how to send a boolean-OR bit anonymously from a group of participants. In this paper, we investigate the weaknesses of DC-nets, study alternative methods and propose a new way to tackle this problem. Our protocol, Anonymous Veto Network (or AV-net), overcomes all the major limitations of DC-nets, including the complex key setup, message collisions and susceptibility to disruptions. While DC-nets are unconditionally secure, AV-nets are computationally secure under the Decision Diffie-Hellman (DDH) assumption. An AV-net is more efficient than other techniques based on the same public-key primitives. It requires only two rounds of broadcast and the least computational load and bandwidth usage per participant. Furthermore, it provides the strongest protection against collusion — only full collusion can breach the anonymity of message senders.

Keywords

Bandwidth Usage Secure Multiparty Computation Message Sender Semantic Security Circuit Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–67 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Golle, P., Juels, A.: Dining Cryptographers Revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chaum, D., Evertse, J.H., Graaf, J.V.D., Peralta, R.: Demonstrating possession of a discrete log without revealing it. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Chaum, D., Evertse, J.H., Graaf, J.V.D.: An improved protocol for demonstrating possession of a discrete logarithm and some generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)Google Scholar
  7. 7.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical report TR 260, Department of Computer Science, ETH Zürich (March 1997)Google Scholar
  9. 9.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  10. 10.
    Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006), http://www7.in.tum.de/~brandtf/studies.shtml CrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the nineteenth annual ACM Conference on Theory of Computing, pp. 218–229 (1987)Google Scholar
  12. 12.
    Kiayias, A., Yung, M.: Non-interactive zero-sharing with applications to private distributed decision making. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 303–320. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broadcast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Wright, M., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: an analysis of a threat to anonymous communications systems. ACM Transactions on Information and Systems Security (TISSEC) 7(4) (2004)Google Scholar
  15. 15.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the twenty-second annual ACM Symposium on Theory of Computing, pp. 503–513 (1990)Google Scholar
  16. 16.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Schneier, B.: Applied Cryptography. J. Wiley and Sons, Chichester (1996)Google Scholar
  18. 18.
    Yao, A.: How to generate and exchange secrets. In: Proceedings of the twenty-seventh annual IEEE Symposium on Foundations of Computer Science, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Feng Hao
    • 1
  • Piotr Zieliński
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations