Can Doxastic Agents Learn? On the Temporal Structure of Learning

  • Cédric Dégremont
  • Nina Gierasimczuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5834)

Abstract

Formal learning theory formalizes the phenomenon of language acquisition. The theory focuses on various properties of the process of conjecture-change over time, and therefore it is also applicable in philosophy of science, where it can be interpreted as a theory of empirical inquiry. Treating “conjectures” as beliefs, we link the process of conjecture-change to doxastic update. Using this approach, we reconstruct and analyze the temporal aspect of learning in the context of temporal and dynamic logics of belief change. We provide a translation of learning scenarios into the domain of dynamic doxastic epistemic logic. Then, we express the problem of finite identifiability as a problem of epistemic temporal logic model checking. Furthermore, we prove a doxastic epistemic temporal logic representation result corresponding to an important theorem from learning theory, that characterizes identifiability in the limit, namely Angluin’s theorem. In the end we discuss consequences and possible extensions of our work.

Keywords

Formal learning theory dynamic epistemic logic doxastic epistemic logic temporal logic epistemic update belief revision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45(2), 117–135 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Proc. TARK 1998, pp. 43–56 (1998)Google Scholar
  3. 3.
    Baltag, A., Smets, S.: Dynamic belief revision over multi-agent plausibility models. In: Bonanno, G., et al. (eds.) Proc. LOFT 2006, pp. 11–24 (2006)Google Scholar
  4. 4.
    van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for interaction. Journal of Philosophical Logic (2009)Google Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  6. 6.
    Gierasimczuk, N.: Bridging learning theory and dynamic epistemic logic. Synthese 169(2), 371–384 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lange, S., Wiehagen, R., Zeugmann, T.: Learning by erasing. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS (LNAI), vol. 1160, pp. 228–241. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Mukouchi, Y.: Characterization of finite identification. In: Jantke, K.P. (ed.) AII 1992. LNCS, vol. 642, pp. 260–267. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of Logic, Language and Information 12(4), 453–467 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    van der Meyden, R., Wong, K.-s.: Complete axiomatizations for reasoning about knowledge and branching time. Studia Logica 75(1), 93–123 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cédric Dégremont
    • 1
  • Nina Gierasimczuk
    • 1
  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamthe Netherlands

Personalised recommendations