First-Order Logic Formalisation of Arrow’s Theorem

  • Umberto Grandi
  • Ulle Endriss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5834)

Abstract

Arrow’s Theorem is a central result in social choice theory. It states that, under certain natural conditions, it is impossible to aggregate the preferences of a finite set of individuals into a social preference ordering. We formalise this result in the language of first-order logic, thereby reducing Arrow’s Theorem to a statement saying that a given set of first-order formulas does not possess a finite model. In the long run, we hope that this formalisation can serve as the basis for a fully automated proof of Arrow’s Theorem and similar results in social choice theory. We prove that this is possible in principle, at least for a fixed number of individuals, and we report on initial experiments with automated reasoning tools.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Welfare. North-Holland, Amsterdam (2002)MATHGoogle Scholar
  2. 2.
    Arrow, K.J.: Social Choice and Individual Values, 2nd edn. John Wiley & Sons, Chichester (1963)MATHGoogle Scholar
  3. 3.
    Pauly, M.: On the role of language in social choice theory. Synthese 163(2), 227–243 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ågotnes, T., van der Hoek, W., Wooldridge, M.: Reasoning about judgment and preference aggregation. In: Proc. 6th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), IFAAMAS (2007)Google Scholar
  5. 5.
    Tang, P., Lin, F.: Computer-aided proofs of Arrow’s and other impossibility theorems. Artificial Intelligence 173(11), 1041–1053 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wiedijk, F.: Arrow’s impossibility theorem. Formalized Mathematics 15(4), 171–174 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nipkow, T.: Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. Technical report, Technische Universität München (2008)Google Scholar
  8. 8.
    Blau, J.H.: The existence of social welfare functions. Econometrica 25(2), 302–313 (1957)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)MATHGoogle Scholar
  11. 11.
    Geanakoplos, J.: Three brief proofs of Arrow’s impossibility theorem. Economic Theory 26(1), 211–215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kirman, A., Sondermann, D.: Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory 5(2), 267–277 (1972)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fishburn, P.C.: Arrow’s impossibility theorem: Concise proof and infinite voters. Journal of Economic Theory 2(1), 103–106 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kaneko, M., Suzuki, N.Y.: A proof-theoretic evaluation of Arrow’s theorem. Working Paper presented at the 9th International Meeting of the Society for Social Choice and Welfare, Montréal (2008)Google Scholar
  15. 15.
    Rubinstein, A.: The single profile analogues to multi profile theorems: Mathematical logic’s approach. International Economic Review 25(3), 719–730 (1984)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    McCune, W.: OTTER 3.3 Reference Manual. Technical Memo ANL/MCS-TM-263, Argonne National Laboratory, Argonne, IL (2003)Google Scholar
  17. 17.
    Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Umberto Grandi
    • 1
  • Ulle Endriss
    • 1
  1. 1.Institute for Logic, Language and ComputationUniversity of Amsterdamthe Netherlands

Personalised recommendations