Unifying Web-Scale Search and Reasoning from the Viewpoint of Granularity

  • Yi Zeng
  • Yan Wang
  • Zhisheng Huang
  • Ning Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5820)


Considering the time constraints and Web scale data, it is impossible to achieve absolutely complete reasoning results. Plus, the same results may not meet the diversity of user needs since their expectations may differ a lot. One of the major solutions for this problem is to unify search and reasoning. From the perspective of granularity, this paper provides various strategies of unifying search and reasoning for effective problem solving on the Web. We bring the strategies of multilevel, multiperspective, starting point from human problem solving to Web scale reasoning to satisfy a wide variety of user needs and to remove the scalability barriers. Concrete methods such as network statistics based data selection and ontology supervised hierarchical reasoning are applied to these strategies. The experimental results based on an RDF dataset shows that the proposed strategies are potentially effective.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fensel, D., van Harmelen, F.: Unifying reasoning and search to web scale. IEEE Internet Computing 11(2), 96, 94–95 (2007)CrossRefGoogle Scholar
  2. 2.
    Yao, Y.: The art of granular computing. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 101–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Yao, Y.: A unified framework of granular computing. In: Handbook of Granular Computing, pp. 401–410. Wiley, Chichester (2008)CrossRefGoogle Scholar
  4. 4.
    Zhang, B., Zhang, L.: Theory and Applications of Problem Solving, 1st edn. Elsevier Science Inc., Amsterdam (1992)zbMATHGoogle Scholar
  5. 5.
    Yao, Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International Conference on Granular Computing, vol. 1, pp. 85–90 (2005)Google Scholar
  6. 6.
    Rogers, T., Patterson, K.: Object categorization: Reversals and explanations of the basic-level advantage. Journal of Experimental Psychology: General 136(3), 451–469 (2007)CrossRefGoogle Scholar
  7. 7.
    Aleman-Meza, B., Hakimpour, F., Arpinar, I., Sheth, A.: Swetodblp ontology of computer science publications. Journal of Web Semantics 5(3), 151–155 (2007)Google Scholar
  8. 8.
    Barabási, A.: Linked: The New Science of Networks. Perseus Publishing (2002)Google Scholar
  9. 9.
    Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of Verbal Learning & Verbal Behavior 8, 240–247 (1969)CrossRefGoogle Scholar
  10. 10.
    Wisniewski, E., Murphy, G.: Superordinate and basic category names in discourse: A textual analysis. Discourse Processing 12, 245–261 (1989)CrossRefGoogle Scholar
  11. 11.
    Minsky, M.: The Emotion Machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon & Schuster, New York (2006)Google Scholar
  12. 12.
    Michalski, R., Winston, P.: Variable precision logic. Artificial Intelligence 29(2), 121–146 (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Carnielli, W., del Cerro, L., Lima-Marques, M.: Contextual negations and reasoning with contradictions. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 532–537.Google Scholar
  14. 14.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 454–459 (2005)Google Scholar
  15. 15.
    Hobbs, J.: Granularity. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)Google Scholar
  16. 16.
    Liu, Q., Wang, Q.: Granular logic with closeness relation λ and its reasoning. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 709–717. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Zhou, B., Yao, Y.: A logic approach to granular computing. The International Journal of Cognitive Informatics & Natural Intelligence 2(2), 63–79 (2008)Google Scholar
  18. 18.
    Murai, T., Resconi, G., Nakata, M., Sato, Y.: Granular reasoning using zooming in & out: Propositional reasoning. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 421–424. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Murai, T., Sato, Y.: Granular reasoning using zooming in & out: Aristotle’s categorical syllogism. Electronic Notes in Theoretical Computer Science 82(4), 186–197 (2003)CrossRefGoogle Scholar
  20. 20.
    Yan, L., Liu, Q.: Researches on granular reasoning based on granular space. In: Proceedings of the 2008 International Conference on Granular Computing, vol. 1, pp. 706–711 (2008)Google Scholar
  21. 21.
    Wickelgren, W.: Memory storage dynamics. In: Handbook of learning and cognitive processes, pp. 321–361. Lawrence Erlbaum Associates, Hillsdale (1976)Google Scholar
  22. 22.
    Zeng, Y., Zhong, N.: On granular knowledge structures. In: Proceedings of the first International Conference on Advanced Intelligence, pp. 28–33 (2008)Google Scholar
  23. 23.
    Vanderveen, K., Ramamoorthy, C.: Anytime reasoning in first-order logic. In: Proceedings of the 9th International Conference on Tools with Artificial Intelligence, pp. 142–148 (1997)Google Scholar
  24. 24.
    Zhong, N., Liu, J., Yao, Y.: Web Intelligence, 1st edn. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yi Zeng
    • 1
  • Yan Wang
    • 1
  • Zhisheng Huang
    • 2
    • 3
  • Ning Zhong
    • 1
    • 4
  1. 1.International WIC InstituteBeijing University of TechnologyBeijingP.R. China
  2. 2.Department of Artificial IntelligenceVrije University AmsterdamAmsterdamThe Netherlands
  3. 3.School of Computer Science and EngineeringJiangsu University of Science and TechnologyJiangsuP.R. China
  4. 4.Department of Life Science and InformaticsMaebashi Institute of TechnologyMaebashiJapan

Personalised recommendations