Advertisement

A Generic Set Theory-Based Pattern Matching Approach for the Analysis of Conceptual Models

  • Jörg Becker
  • Patrick Delfmann
  • Sebastian Herwig
  • Łukasz Lis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5829)

Abstract

Recognizing patterns in conceptual models is useful for a number of purposes, like revealing syntactical errors, model comparison, and identification of business process improvement potentials. In this contribution, we introduce an approach for the specification and matching of structural patterns in conceptual models. Unlike existing approaches, we do not focus on a certain application problem or a specific modeling language. Instead, our approach is generic making it applicable for any pattern matching purpose and any conceptual modeling language. In order to build sets representing structural model patterns, we define operations based on set theory, which can be applied to arbitrary sets of model elements and relationships. Besides a conceptual specification of our approach, we present a prototypical modeling tool that shows its applicability.

Keywords

Conceptual Modeling Pattern Matching Set Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. Doctoral Thesis, Vienna University of Economics and Business Administration (2007)Google Scholar
  2. 2.
    Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization: beyond reengineering. IEEE Transactions on Systems, Man, and Cybernetics 38(1), 69–82 (2008)CrossRefGoogle Scholar
  3. 3.
    Gori, M., Maggini, M., Sarti, L.: The RW2 algorithm for exact graph matching. In: Singh, S., Singh, M., Apté, C., Perner, P. (eds.) Proceedings of the 4th International Conference on Advances in Pattern Recognition, Bath, pp. 81–88 (2005)Google Scholar
  4. 4.
    Scheer, A.-W.: ARIS – Business Process Modelling, 3rd edn., Berlin (2000)Google Scholar
  5. 5.
    Fu, J.: Pattern matching in directed graphs. In: Galil, Z., Ukkonen, E. (eds.) Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching, pp. 64–77. Espoo (1995)Google Scholar
  6. 6.
    Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Structure and Initial Experiments. In: Margaria, T., Padberg, J., Taentzer, G. (eds.) Proceedings of the 2nd International Workshop on Graph and Model Transformation, Brighton (2006)Google Scholar
  7. 7.
    Alexander, C., Ishikawa, S., Silverstein, M. A.: Pattern Language. New York (1977) Google Scholar
  8. 8.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. New York (1995)Google Scholar
  9. 9.
    Fowler, M.: Patterns of Enterprise Application Architecture. Reading (2002)Google Scholar
  10. 10.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)CrossRefGoogle Scholar
  11. 11.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal – The International Journal on Very Large Data Bases 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Li, W., Clifton, C.: SemInt: a tool for identifying attribute correspondences in heterogeneous databases using neural network. Data & Knowledge Engineering 33(1), 49–84 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) Proceedings of the 27th International Conference on Very Large Data Bases, Roma, pp. 49–58 (2001)Google Scholar
  14. 14.
    Aumueller, D., Do, H.-H., Massmann, S., Rahm, E.: Schema and ontology matching with COMA++. In: Proceedings of the 2005 ACM SIGMOD international Conference on Management of Data (SIGMOD 2005), New York, pp. 906–908 (2005)Google Scholar
  15. 15.
    Stumme, G., Mädche, A.: FCA-Merge: Bottom-up merging of ontologies. In: Nebel, B. (ed.) Proceedings of the 17thInternational Joint Conference on Artificial Intelligence, IJCAI 2001, August 4-10, 2001, pp. 225–230 (2001)Google Scholar
  16. 16.
    Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Hars, A.: Reference Data Models: Foundations of Efficient Data Modeling. In: German: Referenzdatenmodelle. Grundlagen effizienter Datenmodellierung, Wiesbaden (1994)Google Scholar
  18. 18.
    Chen, P.P.-S.: The Entity-Relationship Model: Toward a Unified View of Data. ACM Transactions on Database Systems 1(1), 9–36 (1976)CrossRefGoogle Scholar
  19. 19.
    Hirschfeld, Y.: Petri nets and the equivalence problem. In: Börger, E., Gurevich, Y., Meinke, K. (eds.) Proceedings of the 7th Workshop on Computer Science Logic, Swansea, pp. 165–174 (1993)Google Scholar
  20. 20.
    de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying process equivalence based on observed behavior. Data & Knowledge Engineering 64(1), 55–74 (2008)CrossRefGoogle Scholar
  21. 21.
    Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Verelst, J.: When are two workflows the same? In: Atkinson, M., Dehne, F. (eds.) Proceedings of the 11th Australasian Symposium on Theory of Computing, pp. 3–11. Newcastle (2005)Google Scholar
  22. 22.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsene, Z., Léonard, M. (eds.) Proceedings of the 20th International Conference on Advanced Information Systems Engineering, Montpellier, pp. 450–464 (2008)Google Scholar
  23. 23.
    Object Management Group (OMG): Meta Object Facility (MOF) Core Specification. Version 2.0 (2009), http://www.omg.org/spec/MOF/2.0/PDF
  24. 24.
    ISO: Concepts and Terminology for the conceptual Schema and the Information Base. Technical report ISO/TC97/SC5/WG3 (1982) Google Scholar
  25. 25.
    Object Management Group (OMG): Unified Modeling Language (OMG UML), Infrastructure, V2.1.2 (2009), http://www.omg.org/docs/formal/07-11-04.pdf
  26. 26.
    Delfmann, P., Knackstedt, R.: Towards Tool Support for Information Model Variant Management – A Design Science Approach. In: Österle, H., Schelp, J., Winter, R. (eds.) Proceedings of the 15th European Conference on Information Systems (ECIS 2007), St. Gallen, pp. 2098–2109 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jörg Becker
    • 1
  • Patrick Delfmann
    • 1
  • Sebastian Herwig
    • 1
  • Łukasz Lis
    • 1
  1. 1.European Research Center for Information Systems (ERCIS)University of MünsterMünsterGermany

Personalised recommendations