A Frame Manipulation Algebra for ER Logical Stage Modelling

  • Antonio L. Furtado
  • Marco A. Casanova
  • Karin K. Breitman
  • Simone D. J. Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5829)


The ER model is arguably today’s most widely accepted basis for the conceptual specification of information systems. A further common practice is to use the Relational Model at an intermediate logical stage, in order to adequately prepare for physical implementation. Although the Relational Model still works well in contexts relying on standard databases, it imposes certain restrictions, not inherent in ER specifications, which make it less suitable in Web environments. This paper proposes frames as an alternative to move from ER specifications to logical stage modelling, and treats frames as an abstract data type equipped with a Frame Manipulation Algebra (FMA). It is argued that frames, with a long tradition in AI applications, are able to accommodate the irregularities of semi-structured data, and that frame-sets generalize relational tables, allowing to drop the strict homogeneity requirement. A prototype logic-programming tool has been developed to experiment with FMA. Examples are included to help describe the use of the operators.


Frames semi-structured data abstract data types algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbosa, S.D.J., Breitman, K.K., Furtado, A.L., Casanova, M.A.: Similarity and Analogy over Application Domains. In: Proc. XXII Simpósio Brasileiro de Banco de Dados, pp. 238–254. João Pessoa, Brasil (2007)Google Scholar
  2. 2.
    Barsalou, L., Breazeal, C., Smith, L.: Cognition as coordinated non-cognition. Cognitive Processing 8(2), 79–91 (2007)CrossRefGoogle Scholar
  3. 3.
    Beech, D.: A foundation for evolution from relational to object databases. In: Schmidt, J.W., Ceri, S., Missikoff, M. (eds.) Extending Database Technology, pp. 251–270. Springer, New York (1988)Google Scholar
  4. 4.
    Bobrow, D.G., Winograd, T.: An overview of KRL-0, a knowledge representation language. Cognitive Science 1(1), 3–46 (1977)CrossRefGoogle Scholar
  5. 5.
    Booth, W.: A Rhetoric of Irony. U. of Chicago Press (1974)Google Scholar
  6. 6.
    Breitman, K., Casanova, M.A., Truszkowski, W.: Semantic Web: Concepts, Technologies and Applications. Springer, London (2007)MATHGoogle Scholar
  7. 7.
    Burke, K.: A Grammar of Motives. U. of California Press (1969)Google Scholar
  8. 8.
    Chandler, D.: Semiotics: The Basics. Rout¬ledge (2007)Google Scholar
  9. 9.
    Chen, P.P.: The entity-relationship model: toward a unified view of data. ACM Trans. on Database Systems 1(1), 9–36 (1976)CrossRefGoogle Scholar
  10. 10.
    Chen, P.P.: Suggested Research Directions for a New Frontier – Active Conceptual Modeling. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 1–4. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Ciarlini, A.E.M., Barbosa, S.D.J., Casanova, M.A., Furtado, A.L.: Event Relations in Plan-Based Plot Composition. ACM Computers in Entertainment (to appear 2009)Google Scholar
  12. 12.
    Codd, E.F.: Relational completeness of data base sublanguages. In: Rustin, R. (ed.) Database Systems, pp. 65–98. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  13. 13.
    Damme, C.V., Heppe, M., Siorpaes, K.: FolksOntology: An Integrated Approach for Turning Folksonomies into Ontologies. In: Proc. ESWC Workshop - Bridging the Gap between Semantic Web and Web 2.0, SemNet 2007, pp. 57–70 (2007)Google Scholar
  14. 14.
    Date, C.J.: An Introduction to Database Systems. Addison-Wesley, Reading (2003)MATHGoogle Scholar
  15. 15.
    Fauconnier, G., Turner, M.: The Way We Think. Basic Books, New York (2002)Google Scholar
  16. 16.
    Fillmore, C.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in Linguist Theory, New York,Holt, pp. 1–88 (1968)Google Scholar
  17. 17.
    Furtado, A.L., Casanova, M.A., Barbosa, S.D.J., Breitman, K.K.: Analysis and Reuse of Plots using Simi¬larity and Analogy. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 355–368. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Furtado, A.L., Kerschberg, L.: An algebra of quotient relations. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 1–8 (1977)Google Scholar
  19. 19.
    Jaeschke, G., Scheck, H.J.: Remarks on the algebra of non first normal form relations. In: Proc. 1st ACM SIGACT-SIGMOD symposium on principles of database systems, pp. 124–138 (1982)Google Scholar
  20. 20.
    Karlsson, B.F., Furtado, A.L., Barbosa, S.D.J., Casanova, M.A.: PMA: A Plot Manipulation Algebra to Support Digital Storytelling. In: Proc. 8th International Conference on Entertainment Computing (to appear 2009)Google Scholar
  21. 21.
    Lakoff, G.: Women, Fire, and Dangerous Things. The University of Chicago Press (1987)Google Scholar
  22. 22.
    Minsky, M.: A Framework for Representing Knowledge. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)Google Scholar
  23. 23.
    Rich, E.: Users are individuals – individualizing user models. International Journal on Man-Machine Studies 18, 199–214 (1983)CrossRefGoogle Scholar
  24. 24.
    Saussure, F.: In: Bally, C., et al. (eds.) Cours de Linguistique Générale, Payot (1916)Google Scholar
  25. 25.
    Schank, R.C., Colby, K. (eds.): Computer Models of Thought and Language. W.H. Freeman, New York (1973)MATHGoogle Scholar
  26. 26.
    Smith, J.M., Smith, D.C.P.: Data abstraction: aggregation and generalization. ACM Transactions on Database Systems 2(2), 105–133 (1977)CrossRefGoogle Scholar
  27. 27.
    Stonebraker, M.: Inclusion of New Types in Relational Data Base Systems. In: Proc. Second International Conference on Data Engineering, pp. 262–269 (1986)Google Scholar
  28. 28.
    Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachen, N., Helland, P.: The end of an architectural era. In: Proc. VLDB 2007, pp. 1150–1160 (2007)Google Scholar
  29. 29.
    Ullman, J.D., Widom, J.: A first Course on Database Systems. Prentice-Hall, Englewood Cliffs (2008)Google Scholar
  30. 30.
    Varvel, D.A., Shapiro, L.: The Computational completeness of extended database query languages. IEEE Transactions on Software Engineering 15.5, 632–638 (1989)CrossRefGoogle Scholar
  31. 31.
    Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations. Cognitive Science 11, 4 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antonio L. Furtado
    • 1
  • Marco A. Casanova
    • 1
  • Karin K. Breitman
    • 1
  • Simone D. J. Barbosa
    • 1
  1. 1.Departamento de InformáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations