Towards an Ontological Modeling with Dependent Types: Application to Part-Whole Relations

  • Richard Dapoigny
  • Patrick Barlatier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5829)


Generally, mereological relations are modeled using fragments of first-order logic(FOL) and difficulties arise when meta-reasoning is done over their properties, leading to reason outside the logic. Alternatively, classical languages for conceptual modeling such as UML lack of formal foundations resulting in ambiguous interpretations of mereological relations. Moreover, they cannot prove that a given specification is correct from a logical perspective. In order to address all these problems, we suggest a formal framework using a dependent (higher-order) type theory such as those used in program checking and theorem provers (e.g., Coq). It is based on constructive logic and allows reasoning in different abstraction levels within the logic. Furthermore, it maximizes the expressiveness while preserving decidability of type checking and results in a coherent theory with a powerful sub-typing mechanism.


Description Logic Type Theory Dependent Type Proof Object Mereological Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-whole relations in object-centered systems: An overview. Data & Knowledge Engineering 20, 347–383 (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., MCGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Barendregt, H., Geuvers, H.: Proof-Assistants Using Dependent Type Systems. In: Handbook of Automated Reasoning, pp. 1149–1238. Elsevier and MIT Press (2001)Google Scholar
  4. 4.
    Barlatier, P., Dapoigny, R.: A Theorem Prover with Dependent Types for Reasoning about Actions. In: Frontiers in Artificial Intelligence and Applications (Procs. of STAIRS 2008), vol. 179, pp. 12–23. IOS Press, Amsterdam (2008)Google Scholar
  5. 5.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial Intelligence 168(1-2), 70–118 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bittner, T., Donnelly, M.: Computational ontologies of parthood, componenthood, and containment. In: Procs. of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 382–387 (2005)Google Scholar
  7. 7.
    Bunge, M.: Ontology I: The Furniture of the World. In: Treatise on Basic Philosophy, vol. 3. D. Reidel Publishing (1977)Google Scholar
  8. 8.
    Cranefield, S., Purvis, M.: UML as an ontology modeling language. In: Procs. of the 16th Workshop on Intelligent Information Integration (1999)Google Scholar
  9. 9.
    Franconi, E., Ng, G.: The iCom Tool for Intelligent Conceptual Modeling. In: 7th Intl. Workshop on Knowledge Representation meets Databases, KRDB 2000 (2000)Google Scholar
  10. 10.
    Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of Conceptual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 65–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Guizzardi, G., Wagner, G., Guarino, N., Van Sinderen, M.: An Ontologically Well-Founded Profile for UML Conceptual Models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. PhD thesis, Enschede, The Netherlands (2005)Google Scholar
  13. 13.
    Keet, M.C.: Part-whole relations in Objects-Role-Models. In: OTM 2006 Workshops. LNCS, vol. 4278, pp. 1116–1127. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations. Applied Ontology 3(1-2), 91–110 (2008)Google Scholar
  15. 15.
    Luo, Z.: A Unifying Theory of Dependent Types: The Schematic Approach. In: Procs. of Logical Foundations of Computer Science, pp. 293–304 (1992)Google Scholar
  16. 16.
    Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Luo, Z.: Manifest fields and module mechanisms in intensional type theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 237–255. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Meisel, H.: Ontology Representation and Reasoning: A Conceptual Level Approach. Phd thesis at the University of Aberdeen (2005)Google Scholar
  19. 19.
    Motik, B., Cuenca Grau, B., Sattler, U.: Structured Objects in OWL: Representation and Reasoning. In: Procs. of the Int. WWW Conference WWW 2008 (2008)Google Scholar
  20. 20.
    Rector, A.L., Bechhofer, S., Goble, C.A., Horrocks, I., Nowlan, W.A., Solomon, W.D.: The GRAIL concept modelling language for medical terminology. Artificial Intelligence in Medicine 9(2), 139–171 (1997)CrossRefGoogle Scholar
  21. 21.
    Schulz, S., Hahn, U.: Part-whole representation and reasoning in formal biomedical ontologies. Artificial Intelligence in Medicine 34, 179–200 (2005)CrossRefGoogle Scholar
  22. 22.
    Simons, P.: Parts: a study in Ontology. Clarendon Press, Oxford (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Richard Dapoigny
    • 1
  • Patrick Barlatier
    • 1
  1. 1.Laboratoire d’Informatique, Sytèmes, Traitement de l’Information et de la ConnaissanceUniversité de SavoieAnnecy-le-vieux cedexFrance

Personalised recommendations