Comparison of Data Structures for Computing Formal Concepts

  • Petr Krajca
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5861)

Abstract

Presented is preliminary study of the role of data structures in algorithms for formal concept analysis. Studied is performance of selected algorithms in dependence on chosen data structures and size and density of input object-attribute data. The observations made in the paper can be seen as guidelines on how to select data structures for implementing algorithms for formal concept analysis.

Keywords

formal concept analysis data structures algorithms performance comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices. Int. J. General Systems 38(4), 455–467 (2009)MATHCrossRefGoogle Scholar
  2. 2.
    Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences (to appear)Google Scholar
  3. 3.
    Carpineto, C., Romano, G.: Concept data analysis. Theory and applications. J. Wiley, Chichester (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  5. 5.
    Ganter, B.: Two basic algorithms in concept analysis. Technical Report FB4-Preprint No. 831. TH Darmstadt (1984)Google Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations. Springer, Berlin (1999)MATHGoogle Scholar
  7. 7.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Automatic Documentation and Mathematical Linguistics 24(1), 37–45 (1989)Google Scholar
  9. 9.
    Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice (Бьстрый алгоритм построения всех пересечений объектовиз конечной полурешетки in Russian). Automatic Documentation and Mathematical Linguistics 27(5), 11–21 (1993)Google Scholar
  10. 10.
    Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Levitin, A.V.: Introduction to the Design and Analysis of Algorithms. Addison Wesley, Reading (2002)Google Scholar
  13. 13.
    Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures––Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)Google Scholar
  14. 14.
    Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary Relation. Revue Roumaine de Mathématiques Pures et Appliques 23(2), 243–250 (1978)MATHMathSciNetGoogle Scholar
  15. 15.
    Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data (submitted)Google Scholar
  16. 16.
    Sedgewick, R.: Left-leaning red-black trees, http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
  17. 17.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets, Dordrecht-Boston, pp. 445–470 (1982)Google Scholar
  18. 18.
    Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Petr Krajca
    • 1
    • 2
  • Vilem Vychodil
    • 1
    • 2
  1. 1.T. J. Watson SchoolState University of New York at Binghamton 
  2. 2.Dept. Computer SciencePalacky UniversityOlomouc

Personalised recommendations