Transgenic Crop Plants for Resistance to Biotic Stress

  • N. FerryEmail author
  • A. M. R. Gatehouse

The human population is everexpanding; conservative estimates predict that the population will reach ten billion by 2050 (United Nations Population Division), and the ability to provide enough food is becoming increasingly difficult (Chrispeels and Sadava 2003). The planet has a finite quantity of land available to agriculture and the need for increasing global food production has led to increasing exploitation of previously uncultivated land for agriculture; as a result wilderness, wetland, forest and other pristine environments have been, and are being, encroached upon (Ferry and Gatehouse 2009). The minimization of losses to biotic stress caused by agricultural pests would go some way to optimizing the yield on land currently under cultivation. For nearly 50 years, mainstream science has told us that this would be impossible without chemical pesticides (Pimental 1997). The global pesticide market is in excess of $30 billion per year (Levine 2007); despite this, approximately 40% of all crops are lost directly to pest damage (Fig. 1.1).


Transgenic Plant Genetically Modify Genetically Modify Crop Colorado Potato Beetle Transgenic Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57(2):189–202PubMedGoogle Scholar
  2. Amman K (2009) Biodiversity and genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 240–265Google Scholar
  3. Ananieva KI, Ananiev ED (1999) Effect of methyl ester of jasmonic acid and benzylaminopurine on growth and protein profile of excised cotyledons of Cucurbita pepo L. (zucchini). Biol Plant 42:549–557Google Scholar
  4. Anonymous (2007) Can biotech and organic crops coexist? Council for Biotechnology Information.
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal trans-duction. Annu Rev Plant Biol 55:373–399PubMedGoogle Scholar
  6. Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277(2):305–310PubMedGoogle Scholar
  7. Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn evens expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557Google Scholar
  8. Arpaia S (1997) Ecological impact of Bt-transgenic plants: 1. Assessing possible effects of CryIIIB toxin on honey bee (Apis mellifera) colonies. J Genet Breed 50:315–319Google Scholar
  9. Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshid K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149Google Scholar
  10. Ayliffe MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94:765–773PubMedGoogle Scholar
  11. Bakhetia M, Urwin PE, McPherson MJ, Atkinson HJ (2005) RNA interference and control of plant parasitic nematodes. Trends Plant Sci 10:362–367PubMedGoogle Scholar
  12. Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4(4):351–358PubMedGoogle Scholar
  13. Bauer LS (1990) Response of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. San Diego. Environ Entomol 19:428–431Google Scholar
  14. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedGoogle Scholar
  15. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedGoogle Scholar
  16. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS— LRR proteins and their partners. Curr Opin Plant Biol 7:391–399PubMedGoogle Scholar
  17. Bell HA, Fitches EC, Marris GC, Bell J, Edwards JP, Gatehouse JA, Gatehouse AMR (2001) Transgenic crop enhances beneficial biocontrol agent performance. Transgenic Res 10:35–42PubMedGoogle Scholar
  18. Benbrook CM (2004) Genetically engineered crops and pesticide use in the United States: the first nine years, 7th edn. BioTech InfoNet, Idaho, USAGoogle Scholar
  19. Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285PubMedGoogle Scholar
  20. Bohan DA, Boffey WH, Brooks DR, Clark SJ, Dewar AM, Firbank L, Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (2005) Effects on weed and invertebrate abundance and diversity of herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society of London 272:463–474Google Scholar
  21. Boller EF, Haüni F, Poehling HM (2004) Ecological infrastructures: ideabook on functional biodiversity at the farm level. IOBCwprs Commission on Integrated Production Guidelines and Endorsement.
  22. Bolwell GP, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F, Rowntree EG, Wojtaszek P (1999) Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells. Free Radic Res 31:S137–S145PubMedGoogle Scholar
  23. Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354Google Scholar
  24. Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigara, are members of complex multigene families. Insect Biochem Mol Biol 27(7):625–638PubMedGoogle Scholar
  25. Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Insect Physiol 43(9):855–874PubMedGoogle Scholar
  26. Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358PubMedGoogle Scholar
  27. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197PubMedGoogle Scholar
  28. Brooks EM, Hines ER (1999) Viral biopesticides for heliothine control — fact or fiction. Today's Life Sci Jan/Feb: 38–44Google Scholar
  29. Burrows PR, Barker ADP, Newell CA, Hamilton WDO (1999) Plant-derived enzyme inhibitors and lectins for resistance against plant-parasitic nematodes in transgenic crops. Pestic Sci 52:176–183Google Scholar
  30. Byrne PF, Fromherz S (2003) Can GM and non-GM crops coexist? Setting a precedent in Boulder County, Colorado, USA. Food Agr Environ 1:258–261Google Scholar
  31. Calwineries. Accessed 1 Oct 2008
  32. Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284PubMedGoogle Scholar
  33. Canola Council of Canada (2001) Canola Council of Canada, 2001. An agronomic and economic assessment of transgenic canola. The Growers manual. p 26.
  34. Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592PubMedGoogle Scholar
  35. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63PubMedGoogle Scholar
  36. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences 95:6531–6536Google Scholar
  37. Castle LA, Wu G, McElroy D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17(2):105–112PubMedGoogle Scholar
  38. Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops; a review. J Environ Qual 35:1633–1658PubMedGoogle Scholar
  39. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum,suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2199PubMedGoogle Scholar
  40. Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, van Montagu M, Inze D, van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences 95:5818–5823Google Scholar
  41. Champion GT, May MJ, Bennett S, Brooks DR, Clark SJ, Daniels RE, Firbank LG, Haughton AJ, Hawes C, Heard MS, Perry JN, Randle Z, Rossall MJ, Rothery P, Skellern MP, Scott RJ, Squire GR, Thomas MR (2003) Crop management and agronomic context of the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B 358:1801–1818Google Scholar
  42. Charles D (2007) U.S. courts say transgenic crops need tighter scrutiny. Science 315:1069Google Scholar
  43. Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54PubMedGoogle Scholar
  44. Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabi-dopsis. Plant J 27:101–113PubMedGoogle Scholar
  45. Chiang CC, Hadwinger LA (1991) The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. Mol Plant Microbe Interact 4:324–331PubMedGoogle Scholar
  46. Chrispeels M, Sadava D (2003) Plants, genes and crop biotechnology. ASPB/Jones and Bartlett, Boston, MA 562 pGoogle Scholar
  47. Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3(1):1–9PubMedGoogle Scholar
  48. Christoffoleti PJ, Galli AJB, Carvalho SJP, Moreira MS, Nicolai M, Foloni LL, Martins BAB, Ribeiro DN (2008) Glyphosate sustainability in South American cropping systems. Pest Manag Sci 64:422–427PubMedGoogle Scholar
  49. Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308PubMedGoogle Scholar
  50. Collinge DB, Søgaard Lund O, Thordal-Christensen H (2008) What are the prospects for genetically engineered, disease resistant plants? Eur J Plant Pathol 121:217–231Google Scholar
  51. Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39:915–923Google Scholar
  52. Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Biotechnology — Transgenic crops in natural habitats. Nature 409:682–683PubMedGoogle Scholar
  53. Crecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subspecies kurstaki bound to humic acids from soil. Soil Biol Biochem 30:463–470Google Scholar
  54. Dale PJ (2002) The environmental impact of genetically modified (GM) crops: a review. J Agr Sci 138:245–248Google Scholar
  55. Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574PubMedGoogle Scholar
  56. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348PubMedGoogle Scholar
  57. Daniels R, Boffey C, Mogg R, Bond J, Clarke R (2005) The potential for dispersal of herbicide tolerance genes from genetically-modified, herbicide-tolerant oilseed rape crops to wild relatives. Final Report to DEFRA.
  58. Darmency H, Vigouroux Y, Gestat De Garambe T, Richard-Molard M, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosafety Res 6:197–206PubMedGoogle Scholar
  59. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518PubMedGoogle Scholar
  60. De Leo F, Bonade-Bottino M, Ceci LR, Gallerani R, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol 31(6–7):593–602Google Scholar
  61. de Maagd RA, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4(1):9–13PubMedGoogle Scholar
  62. de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–1999PubMedGoogle Scholar
  63. De Samblanx GW, Goderis IJ, Thevissen K, Raemaekers R, Fant F, Borremans F, Acland DP, Osborn RW, Patel S, Broekaert WF (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272:1171–1179PubMedGoogle Scholar
  64. De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18(9):923–937PubMedGoogle Scholar
  65. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14(2):169–176PubMedGoogle Scholar
  66. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250PubMedGoogle Scholar
  67. Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences 92:6602–6606Google Scholar
  68. Denolf P (1996) Isolation, cloning and characterisation of Bacillus thuringiensis delta-endotoxin receptors in Lepidoptera. PhD, University of Gent, BelgiumGoogle Scholar
  69. Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290PubMedGoogle Scholar
  70. Devine GJ, Furlong MJ (2007) Insecticide use: contexts and ecological consequences. Agr Hum Val 24:281–306Google Scholar
  71. Devine MD, Preston C (2000) The molecular basis of herbicide resistance. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanisms of action. Sheffield Academic Press, Sheffield, UK, pp 72–104Google Scholar
  72. Devos Y, Reheul D, De Schrijver A, Cors F, Moens W (2004) Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ Biosafety Res 3:135–148PubMedGoogle Scholar
  73. Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 8(9):403–405PubMedGoogle Scholar
  74. Dill GM (2005) Glyphosate-resistant crops; history, status and future. Pest Manag Sci 61:219–224PubMedGoogle Scholar
  75. Dill GM, CaJacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331PubMedGoogle Scholar
  76. Directorate General for Agriculture and Rural Development of the European Commission. What is organic farming?
  77. Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42(11–12):1035–1045Google Scholar
  78. Du JP, Foissac X, Carss A, Gatehouse AMR, Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30(4):297–305PubMedGoogle Scholar
  79. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325PubMedGoogle Scholar
  80. Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag Sci 61:211–218PubMedGoogle Scholar
  81. Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506PubMedGoogle Scholar
  82. Ellstand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563Google Scholar
  83. Ellstrand NC (2003) Current knowledge of gene flow in plants. Philos Trans R Soc Lond B Biol Sci 358:1163–1170PubMedGoogle Scholar
  84. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563Google Scholar
  85. Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium — mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206Google Scholar
  86. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389PubMedGoogle Scholar
  87. Fermin G, Inglessis V, Garboza C, Rangle S, Dagert M, Gonsalves D (2004) Engineered resistance against Papaya ringspot virus in Venezuelan transgenic papaya. Plant Dis 88:516–522Google Scholar
  88. Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533PubMedGoogle Scholar
  89. Ferro DN, Gerlernter WD (1989) Toxicity of a new strain of Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 82:750–755Google Scholar
  90. Ferry N, Gatehouse AMR (eds) (2009) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UKGoogle Scholar
  91. Ferry N, Edwards MG, Gatehouse JA, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19PubMedGoogle Scholar
  92. Ferry N, Edwards MG, Mulligan EA, Emami K, Petrova A, Frantescu M, Davison GM, Gatehouse AMR (2003) Engineering resistance to insect pests. In: Christou P, Klee H (eds) Handbook of plant biotechnology. Wiley, New York, NY, pp 373–394Google Scholar
  93. Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transgenic Res 16:795–812PubMedGoogle Scholar
  94. Feyereisen R (1995) Molecular biology of inseticide resistance. Toxicol Lett 82(83):83–90PubMedGoogle Scholar
  95. French-Constant RH (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163–170Google Scholar
  96. Firbank LG, Forcella F (2000) Genetically modified crops and farmland biodiversity. Science 289:1481–1482PubMedGoogle Scholar
  97. Fisher L (2007) Growers continue to grow and use roundup ready alfalfa but Monsanto Company is disappointed with preliminary injunction affecting purchase and planting.http://www. Accessed 15 Oct 2008
  98. Fitches E, Audsley N, Gatehouse JA, Edwards JP (2002) Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemo-lymph following oral ingestion. Insect Biochem Mol Biol 32(12):1653–1661PubMedGoogle Scholar
  99. Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AMR, Edwards JP, Gatehouse JA (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50(1):61–71PubMedGoogle Scholar
  100. Fletcher MR, Hunter K, Barnett EA, Sharp EA (2000) Pesticide poisoning of animals 1998: investigations of suspected incidents in the United Kingdom. A Report of the Environment Panel of the Advisory Committee on Pesticides. London, UK, MAFF, (PB4786), p 54Google Scholar
  101. Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46(4):573–583PubMedGoogle Scholar
  102. Forcada C, Alcacer E, Garcera MD, Tato A, Martinez R (1999) Resistance to Bacillus thurin-giensis Cry1Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Arch Insect Biochem Physiol 42:51–63PubMedGoogle Scholar
  103. Foresman C, Glasgow L (2008) US grower perceptions and experiences with glyphosate-resistant weeds. Pest Manag Sci 64:388–391PubMedGoogle Scholar
  104. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedGoogle Scholar
  105. Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences 97(26):14801–14806Google Scholar
  106. Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202PubMedGoogle Scholar
  107. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180(1):27–44PubMedGoogle Scholar
  108. Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293(5531):857–860PubMedGoogle Scholar
  109. Gatehouse JA, Gatehouse AMR (1999) Genetic engineering of plants for insect resistance. In: Rechcigl JE, Reichcigl NA (eds) Biological and biotechnological control of insect pests. CRC Press LLC, USA, pp 211–241Google Scholar
  110. Gatehouse AMR, Davison GM, Stewart JN, Galehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5(2):153–165Google Scholar
  111. Gatehouse JA (2002a) Plant resistance towards insect herbivores: a dynamic interaction. Tansley Review No 140. New Phytol 156:145–169Google Scholar
  112. Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3(1):49–63Google Scholar
  113. Gatehouse AMR, Ferry N, Raemaekers RJM (2002) The case of the Monarch butterfly; a verdict is returned. Trends Genet 18:249–251PubMedGoogle Scholar
  114. Gatehouse AMR, Hilder VA, Powell KS, Wang M, Davison GM, Gatehouse LN, Down RE, Edmonds HS, Boulter D, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1994) Insect-resistant transgenic plants — choosing the gene to do the job. Biochem Soc Trans 22(4):944–949PubMedGoogle Scholar
  115. Gatehouse AMR, Powell K, Peumans W, Damme EV, Gatehouse JA (1995) Insecticidal properties of plant lectins: their potential in plant protection. In: Pusztai A, Bardocz S (eds) Lectins biomedical perspectives. Taylor & Francis, London, UK, pp 35–57Google Scholar
  116. Gatehouse JA (2002b) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156(2):145–169Google Scholar
  117. Gealy DR, Dilday RH (1997) Biology of red rice (Oryza sativa L.) accessions and their susceptibility to glufosinate and other herbicides. Weed Sci Soc Am 37:34Google Scholar
  118. Gealy DR, Bradford KJ, Hall L, Hellmich R, Raybold A, Wolt J, Zilberman D (2007) Implications of gene flow in the scale-up and commercial use of biotechnology-derived crops: economic and policy considerations. CAST Issue Paper. CAST, Ames, IA, p 24Google Scholar
  119. Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafety Res 2:89–103PubMedGoogle Scholar
  120. Gianessi LP (2005) Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag Sci 61:241–245PubMedGoogle Scholar
  121. Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thur-ingiensis CryIAc toxin-binding protein from the midgut of the Lepidopteran insect Heliothis virescens. J Biol Chem 270(45):27277–27282PubMedGoogle Scholar
  122. Ginder RG (2001) Channelling, identity preservation and the value chain: lessons from the recent problems with StarLink corn. Iowa State University, Ames, IAGoogle Scholar
  123. Giri AP, Wunsch H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT (2006) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. Plant Physiol 142:1621–1641PubMedGoogle Scholar
  124. Glaser JA, Matten SR (2003) Sustainability of insect resistance management strategies for transgenic Bt corn. Biotechnol Adv 22:45–69PubMedGoogle Scholar
  125. Graef F, Stachow U, Werner A, Schütte G (2007) Agricultural practice changes with cultivating genetically modified herbicide-tolerant oilseed rape. Agr Syst 94(2):111–118Google Scholar
  126. Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the Cowpea trypsin inhibitor gene. Ann Appl Biol 127(1):163–173Google Scholar
  127. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29PubMedGoogle Scholar
  128. Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the NBS–LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–80PubMedGoogle Scholar
  129. Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366PubMedGoogle Scholar
  130. Gressel J, Rotteveel AW (2000) Genetic and ecological risks from biotechnologically-derived herbicide-resistant crops: decision trees for risk assessment. Plant Breed Rev 18:251–303Google Scholar
  131. Gressel J (2008) Genetic glass ceilings. Transgenics for crop biodiversity. John Hopkins Univ Press, Baltimore, MDGoogle Scholar
  132. Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406PubMedGoogle Scholar
  133. Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 10:390–396Google Scholar
  134. Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252PubMedGoogle Scholar
  135. Hall K, Topinka J, Huffman L, Davis A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694Google Scholar
  136. Harborne J (1998) Introduction to ecological chemistry. Academic, London, UKGoogle Scholar
  137. Harriman P (2007) Roundup ready concerns land alfalfa seed in court.
  138. Haslberger A (2001) GMO contamination of seeds. Nat Biotechnol 19:613PubMedGoogle Scholar
  139. Hayes KR, Gregg PC, Gupta VVSR, Jessop R, Lonsdale WM, Sindel B, Stanley J, Williams CK (2004) Identifying hazards in complex ecological systems. Part 3: Hierarchical Holographic Model for herbicide tolerant oilseed rape. Environ Biosafety Res 3:109–128PubMedGoogle Scholar
  140. He KJ, Wang ZY, Zhang YJ (2009) Monitoring Bt resistance in the field: China as a case study. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 344–360Google Scholar
  141. Heifetz PB (2000) Genetic engineering of the chloroplast. Biochimie 82:655–666PubMedGoogle Scholar
  142. Hellmich RL, Siegfried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T (2001) Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proceedings of the National Academy of Sciences 98:11925–11930Google Scholar
  143. Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defence-related plant mRNAs. Plant Physiol 125(2):683–700PubMedGoogle Scholar
  144. Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487Google Scholar
  145. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330(6144):160–163Google Scholar
  146. Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomol Exp Appl 104(1):181–192Google Scholar
  147. Howatt KA, EndresGJ HendricksonPE, AberleEZ LukachJR, JenksBM RivelandNR, ValentiSA RystedtCM (2006) Evaluation of glyphosate-resistant hard red spring wheat (Triticum aesti-vum). Weed Technol 20:706–716Google Scholar
  148. Accessed 14 July 2008
  149. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a hydrogen peroxide-generating oxalate oxidase gene evokes defense responses in sunflower. Plant Physiol 133:170–181PubMedGoogle Scholar
  150. Hurburgh CR (2000) The GMO controversy and grain handling for 2000. Iowa State University, Ames, IAGoogle Scholar
  151. Hurburgh CR (2003) Constraints for isolation and traceability of grains. Iowa State University, Ames, IAGoogle Scholar
  152. Jackson RE, Bradley JR Jr, Van Duyn JW (2004) Performance of feral and Cry1Ac-selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing either one or two Bacillus thuringiensis ssp. kurstaki proteins under greenhouse conditions. J Entomol Sci 39:46–55Google Scholar
  153. Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaeffer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54:2953–2958PubMedGoogle Scholar
  154. James C (2001) Global review of commercialized transgenic crops. ISAAA Briefs 24, ISAAAGoogle Scholar
  155. James C (2007) Global status of commercialized biotech/GM crops. ISAAA Briefs 37, ISAAAGoogle Scholar
  156. Joel JD, Kleifeld U, Losner-Goshen D, Herzlinger G, Gressel J (1995) Transgeniccrops against parasites. Nature 374:220–221Google Scholar
  157. Johnson WG, Gibson KD (2006) Glyphosate-resistant weeds and resistance management strategies: an Indiana grower perspective. Weed Technol 20:768–772Google Scholar
  158. Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43(10):885–895PubMedGoogle Scholar
  159. Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131(1):1–11Google Scholar
  160. Kahn RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20Google Scholar
  161. Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Plant Biol 43:491–521Google Scholar
  162. Karlova R, Weemen-Hendriks M, Naimov S, Ceron J, Dukiandjiev S, de Maagd RA (2005) Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Achybrids. J Invertebr Pathol 88(2):169–172PubMedGoogle Scholar
  163. Kasprzewska A (2003) Plant chitinases — regulation and function. Cell Mol Biol Lett 8:809–824PubMedGoogle Scholar
  164. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedGoogle Scholar
  165. Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20Google Scholar
  166. Kinealy C (1995) This great calamity: the Irish Famine 1845–1852. Gill and MacMillan, New York, NYGoogle Scholar
  167. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350PubMedGoogle Scholar
  168. Knight PJK, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis Cryla(C) delta-endotoxin in the brush-border membrane of the Lepidopteran Manduca sexta is aminopeptidase-N. Mol Microbiol 11(3):429–436PubMedGoogle Scholar
  169. Knoester M, van Loon LC, van den Heuvel J, Hennig J, BolJF LHJM (1998) Ethylene-insensitive tobaccolacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences 95:1933–1937Google Scholar
  170. Krieg A, Hugner AM, Lagenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrio-nis: Ein neuer gegenuber Larven von Coleopteran wirksamer Pathotyp. Z Angew Entomol 96:500–508Google Scholar
  171. Krubphachaya P, Juricek M, Kertbundit S (2007) Induction of RNA-mediated resistance to papaya ringspot virus type W. J Biochem Mol Biol 40(3):404–411PubMedGoogle Scholar
  172. Lan HY, Tian YC, Wang CH, Liu GZ, Zhang LH, Wang LL, Chen ZH (2000) Studies of transgenic tobacco plants expressing beta-1, 3-glucanase and chitinase genes and their potential for fungal resistance. Yi Chuan Xue Bao 27:70–77PubMedGoogle Scholar
  173. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242PubMedGoogle Scholar
  174. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233PubMedGoogle Scholar
  175. Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1432–2242Google Scholar
  176. Leple JC, Bonadebottino M, Augustin S, Pilate G, Letan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera, Chrysomelidae) of transgenic poplars expressing a cysteine proteinase-inhibitor. Mol Breed 1(4):319–328Google Scholar
  177. Levine MJ (2007) Pesticides: a toxic time bomb in our midst. Praeger, USA, pp 213–214Google Scholar
  178. Li XC, Berenbaum MR, Schuler MA (2000) Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem Mol Biol 30(1):75–84PubMedGoogle Scholar
  179. Li XC, Schuler MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419(6908):712–715PubMedGoogle Scholar
  180. Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759PubMedGoogle Scholar
  181. Ling K, Namba S, Gonsalves C, Slightom JL, Gonsalves D (1991) Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Biotechnology 9:752–758PubMedGoogle Scholar
  182. Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214–214PubMedGoogle Scholar
  183. Luan V, Figueroa SJ, Baltazar MB, Gomez MR, Townsend LR, Schoper JB (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci 41:1551–1557Google Scholar
  184. Luo K, Sangadala S, Masson L, Mazza A, Brousseau R, Adang MJ (1997) The Heliothis virescens 170 kDa aminopeptidase functions as “receptor A” by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. Insect Biochem Mol Biol 27(8–9):735–743PubMedGoogle Scholar
  185. Lutman P (ed) (1999) Gene flow and agriculture: relevance for transgenic crops (BCPC Symposium Proceedings No 72, Keele Proceedings). British Crop Protection Council, London, UKGoogle Scholar
  186. Ma BL, Subedi KD, Reid LM (2004) Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci 44:1273–1282Google Scholar
  187. Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, Schmidt O (2005) Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in he gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol 35:729–739PubMedGoogle Scholar
  188. MacIntosh SC, Stone TB, Sims SR, Hunst PL, Green-plate JT, Marrone PG, Perlak FJ, Fischhoff DA, Fuchs RL (1990) Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J Invertebr Pathol 56:258–266PubMedGoogle Scholar
  189. Madsen KH, Blacklow WM, Jensen JE, Streibig JC (1999) Simulation of herbicide use in a crop rotation with transgenic herbicide-tolerant oilseed rape. Weed Res 39:95–106Google Scholar
  190. Maiti IB, Dey N, Pattanaik S, Dahlman DL, Rana RL, Webb BA (2003) Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol J 1:209–219PubMedGoogle Scholar
  191. Malone LA, Pham-Delegue M-H (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304Google Scholar
  192. Malone LA, Burgess EPJ (2009) Impact of genetically modified crops on pollinators. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 199–225Google Scholar
  193. Malone LA, Gatehouse AMR, Barratt BIP (2008) Beyond Bt: alternative strategies for insect-resistant crops. In: Romeis J, Shelton T, Kennedy G (eds) Integration of insect-resistant genetically modified crops within integrated pest management programs. Series on progress in biological control. Springer, BerlinGoogle Scholar
  194. Manners JM, Penninckx IAMA, Vermaere K, Kazan K, Brown RL, Morgan A, Maclean DJ, Curtis MD, Cammue BPA, Broekaert WF (1998) The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38:1071–1080PubMedGoogle Scholar
  195. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance to gossypol. Nat Biotechnol 25:1307–1313PubMedGoogle Scholar
  196. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7(1):85–93Google Scholar
  197. Marrs KA (1996) The functions and regulation of glutathione S-tranferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158PubMedGoogle Scholar
  198. Matus-Cadiz PH, Horak MJ, Blomquist LK (2004) Gene flow in wheat at the field scale. Crop Sci 44:718–727Google Scholar
  199. Mazarei M, Teplova I, Hajimorad MR, Stewart CN (2008) Pathogen phytosensing: plants to report plant pathogens. Sensors 8:2628–2641Google Scholar
  200. Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AMR, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences 102(22):7812–7816Google Scholar
  201. Metraux JP, Nawrath C, Genoud T (2002) Systemic acquired resistance. Euphytica 124:237–243Google Scholar
  202. Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The Arabidopsis thaliana disease resistance gene rps2 encodes a protein containing a nucleotide binding site and leucine rich repeats. Cell 78:1089–1099PubMedGoogle Scholar
  203. Mittler R, Vanderawera S, Gollery M, Van Breusegen F, (2004) Reactive oxygen gene network of patients. Trends in plant Science 9:490–498PubMedGoogle Scholar
  204. Mishra P (2007) Exit wounds. The New Yorker, 13 Aug 2007Google Scholar
  205. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedGoogle Scholar
  206. Moellenbeck DJ, Peters ML, Bing JW, Rouse JR, Higgins LS, Sims L, Nevshemal T, Marshall L, Ellis RT, Bystrak PG (2001) Insecticidal proteins from Bacillus thuringiensis protect from corn rootworms. Nat Biotechnol 19:668–672PubMedGoogle Scholar
  207. Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defence pathways. Plant Physiol 125(2):1074–1085PubMedGoogle Scholar
  208. Moran PJ, Cheng YF, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51(4):182–203PubMedGoogle Scholar
  209. Mueller TC, Mitchell PD, Young BG, Culpepper AS (2005) Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol 19:924–933Google Scholar
  210. Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M (1998) Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Biosci Biotechnol Biochem 62(4):727–734PubMedGoogle Scholar
  211. Nauen R, Ebbinghaus-Kintscher U, Elbert A, Jeschke P, Tietjen K (2001) Acetycholine receptors as sites for developing neonicotinoid insecticides. In: Ishaaya I (ed) Biochemical sites important in insecticide action and resistance. Springer, Berlin, pp 77–105Google Scholar
  212. Naylor REL (2002) Weed management handbook. Osney Mead, Blackwell Science Ltd, Oxford, UKGoogle Scholar
  213. Nicholson GM (2007) Fighting the global pest problem: preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422PubMedGoogle Scholar
  214. Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275:19897–19905PubMedGoogle Scholar
  215. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedGoogle Scholar
  216. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844PubMedGoogle Scholar
  217. Oldroyd GED, Staskawicz BJ (1998) Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences 95:10300–10305Google Scholar
  218. Oppert B, Kramer KJ, Johnson DE, MacIntosh SC, McGaughey WH (1994) Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia inter-punctella. Biochem Biophys Res Commun 198:940–947PubMedGoogle Scholar
  219. Ortego F, Pons X, Albajes R, Castañera P (2009) European commercial GM plantings and field trials. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 327–344Google Scholar
  220. Ortiz-Garcia S, Ezcurra E, Schoel B, Acevedo F, Soberon J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proceedings of the National Academy of Sciences 102:12338–12343Google Scholar
  221. Ostlie K (2001) Crafting crop resistance to corn rootworms. Nat Biotechnol 19:624–625PubMedGoogle Scholar
  222. Ostlie KR, Hutchison WD, Hellmich RL (1997) Bt corn and European corn borer (NCR Publ 602). University of Minnesota, Saint Paul, MNGoogle Scholar
  223. Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA (2003) Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. Plant Physiol 133 (1):379–390PubMedGoogle Scholar
  224. Owen M (1999) Weed management update for the next millenium.
  225. Owen MDK (2008) Weed species shifts in glyphosate-resistant crops. Pest Manag Sci 64:377–387PubMedGoogle Scholar
  226. Owen MDK (2000) Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Prot 19:765–771Google Scholar
  227. Owen MDK (2005) Maize and soybeans — controllable volunteerism without ferality. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, FL, pp 149–165Google Scholar
  228. Owen MDK (2006) Weed management update — who cares? In: Proceedings Integrated Crop Management Conference, Iowa State University, Ames, IA, USA, pp 149–153Google Scholar
  229. Owen MDK (1999) Weed management update for the next millennium. In: Proceedings Integrated Crop Management Conference, vol 11, Iowa State University, Ames, IA, USA, pp 305–310Google Scholar
  230. Owen MDK (2009) Herbicide tolerant genetically modified crops: resistance management. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 115–165Google Scholar
  231. Padgette R, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461Google Scholar
  232. Pallutt B, Hommel B (1998) Konzept und erste Ergebnisse zur Bewertung von Glufosinat-tolerantem Raps und Mais im Rahmen einer 4-feldrigen Fruchtfolge. Z PflKrankh PflSchutz Sonderheft 16:427–433Google Scholar
  233. Palm CJ, Schaller DL, Donegan KK, Seidler RJ (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki δ-endotoxin. Can J Microbiol 42:1258–1262Google Scholar
  234. Palmer RG, Gai J, Sun H, Burton JW (2001) Production and evaluation of hybrid soybean. n: Janick J (ed) Plant breeding reviews. Wiley, New York, NY, pp 263–308Google Scholar
  235. Pannetier C, Giband M, Couzi P, LeTan V, Mazier M, Tourneur J, Hau B (1997) Introduction of new traits into cotton through genetic engineering: insect resistance as example. Euphytica 96(1):163–166Google Scholar
  236. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, Processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242PubMedGoogle Scholar
  237. Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468PubMedGoogle Scholar
  238. Peumans WJ, Vandamme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109(2):347–352PubMedGoogle Scholar
  239. Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–8Google Scholar
  240. Pimental D (1997) Water resources: agriculture, the environment, and society. Bioscience 47(2):97–106Google Scholar
  241. Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1995) Antifeedant effects of plant-lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl 75(1):51–59Google Scholar
  242. Powell KS, Spence J, Bharathi M, Gatehouse JA, Gatehouse AMR (1998) Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44(7–8):529–539PubMedGoogle Scholar
  243. Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotech-nol 26(7):393–400Google Scholar
  244. Punja ZK, Raharjo SH (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis 80:999–1005Google Scholar
  245. Quist DA (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543PubMedGoogle Scholar
  246. Rahman MM, Roberts HL, Sarjan M, Asgari S, Schmidt O (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proceedings of the National Academy of Sciences 101:2696–2699Google Scholar
  247. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15(4):469–477PubMedGoogle Scholar
  248. Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5:119–133PubMedGoogle Scholar
  249. Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411PubMedGoogle Scholar
  250. Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898PubMedGoogle Scholar
  251. Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defence. J Plant Growth Regul 22(1):82–98Google Scholar
  252. Romeis J, Bartsch D, BiglerF CMP, Gielkens MMC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208PubMedGoogle Scholar
  253. Ross H (1986) Potato breeding — problems and perspectives: advances in plant breeding, J Plant Breed (Supl 13). Paul Parey, Berlin 132 pGoogle Scholar
  254. Sammons RD, Heering DC, DinicolaN GH, Elmore GA (2007) Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol 21:347–354Google Scholar
  255. Sangadala S, Walters FS, English L, Adang MJA (1994) Mixture of Manduca sexta aminopepti-dase and phosphatase enhances Bacillus thuringiensis insecticidal Cryia(C) toxin binding and (Rb+-K+)-Rb-86 efflux in vitro. J Biol Chem 269(13):10088–10092PubMedGoogle Scholar
  256. Sankula S (2006) Quantification of the impacts on US agriculture of biotechnology-derived crops planted in 2005. Executive Summary, National Center for Food and Agricultural Policy. Accessed 15 Oct 2008
  257. Sanvido O, Romeis J, Bigler F (2007) Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Green Gene Technol 107:235–278Google Scholar
  258. Sauvion N, Rahbe Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach-potato aphid Myzus persicae. Entomol Exp Appl 79(3):285–293Google Scholar
  259. Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230Google Scholar
  260. Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bacillus thurin-giensis corn. Nature 402:480PubMedGoogle Scholar
  261. Sayyed A, Gatsi R, Kouskoura T, Wright DJ, Crickmore N (2001) Susceptibility of a field-derived, Bacillus thuringiensis-resistant strain of diamondback moth to in vitro-activated Cry1Ac toxin. Appl Environ Microbiol 67:4372–4373PubMedGoogle Scholar
  262. Schaller H, Bouvier-Navé P, Benveniste P (1998) Overexpression of an Arabidopsis cDNA encoding a sterol-C241-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. Plant Physiol 118:461–469PubMedGoogle Scholar
  263. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences 97(21):11655–11660Google Scholar
  264. Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bru-chus pisorum) in transgenic peas (Pisum sativum L). Plant Physiol 107:1233–1239PubMedGoogle Scholar
  265. Schuler TH, Potting RPJ, Denholm I, Poppy GM (1999) Parasitoid behaviour and Bacillus thuringiensis plants. Nature 400:825–826PubMedGoogle Scholar
  266. Schütte G, Stachow U, Werner A (2004) Agronomic and environmental aspects of the cultivation of transgenic herbicide resistant plants. 11/04. Umweltbundesamt, BerlinGoogle Scholar
  267. Segura A, Moreno M, Molina A, Garcia-Olmedo F (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett 435:159–162PubMedGoogle Scholar
  268. Service RF (2007a) Glyphosate — the conservationist's friend? Science 316:1116–1117Google Scholar
  269. Service RF (2007b) A growing threat down on the farm. Science 316:1114–1117Google Scholar
  270. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12(8):793–796Google Scholar
  271. Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78PubMedGoogle Scholar
  272. Shen BZ, Zheng ZW, Dooner HK (2000) A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterization of wild-type and mutant alleles. Proceedings of the National Academy of Sciences 97(26):14807–14812Google Scholar
  273. Shepherd DN, Mangwende T, Martin DP, Bezuidenhout M, Carolissen KFJ, CH MAL, Rybicki EP, Thomson JA (2007) Maize streak virus-resistant transgenic maize: a first for Africa. Plant Biotechnol 5:759–767Google Scholar
  274. Shipitalo MJ, Malone RW, Owens LB (2008) Impact of glyphosate-tolerant sobyean and glufosinate-tolerant corn production on herbicide losses in surface runoff. J Environ Qual 37:401–408PubMedGoogle Scholar
  275. Sims SR (1995) Bacillus thuringiensis var. kurstaki [Cry1A(c)] protein expressed in transgenic cotton: effects on beneficial and other non-target insects. Southwest Entomol 20:493–500Google Scholar
  276. Sims SR (1997) Host activity spectrum of the CryIIA Bacillus thuringiensis subsp. kurstaki protein: effects on Lepidoptera, Diptera, and non-target arthropods. Southwest Entomol 22:395–404Google Scholar
  277. Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of apolyphagous pest Spodop-tera litura. Transgenic Res 13(5):397–410PubMedGoogle Scholar
  278. Snow AA, Pedro MP (1997) Commercialization of transgenic plants: potential ecological risks. Bioscience 47:86–96Google Scholar
  279. Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423PubMedGoogle Scholar
  280. Steward CN Jr, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol Ecol 6:773–779Google Scholar
  281. Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phyto-pathol 35:235–270Google Scholar
  282. Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5(1):65–73Google Scholar
  283. Stokes TL, Kunkel BN, Richards EJ (2002) Epigentic variation in Arabidopsis disease resistance. Genes Dev 16:171–182PubMedGoogle Scholar
  284. Stokstad E (2004) Monsanto pulls the plug on genetically modified wheat. Science 304 (5674):1088–1089PubMedGoogle Scholar
  285. Stone TB, Sims SR, Marrone PG (1989) Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thur-ingiensis subsp. Kurstaki. J Invertebr Pathol 53:228–234Google Scholar
  286. Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19:769–772PubMedGoogle Scholar
  287. Szankowski I, Briviba K, Fleshhut J, Schonherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149PubMedGoogle Scholar
  288. Tabashnik BE, Carrière Y (2009) Insect resistance to genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified/novel crops. CAB International, Oxford, UK, pp 74–101Google Scholar
  289. Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202PubMedGoogle Scholar
  290. Takakura Y, Che FS, Ishida Y, Tsutsumi F, Kurotani KI, Usami S, Isogai A, Imaseki H (2008) Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Mol Plant Pathol 9:525–529PubMedGoogle Scholar
  291. The United States Department of Agriculture.
  292. Thies JE, Devare MH (2007) An ecological assessment of transgenic crops. J Dev Stud 43:97–129Google Scholar
  293. Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophtora infestans. Physiol Mol Plant Pathol 51:265–278Google Scholar
  294. Tinjuangjun P, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2000) Enhanced insect resistance in Thai rice varieties generated by particle bombardment. Mol Breed 6(4):391–399Google Scholar
  295. Tortiglione C, Fogliano V, Ferracane R, Fanti P, Pennacchio F, Monti LM, Rao R (2003) An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Mol Biol 53(6):891–902PubMedGoogle Scholar
  296. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391PubMedGoogle Scholar
  297. Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10:37–50Google Scholar
  298. United Nations Population Division.
  299. Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8(1):121–131PubMedGoogle Scholar
  300. Vadlamudi RK, Weber E, Ji IH, Ji TH, Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270(10):5490–5494PubMedGoogle Scholar
  301. Vaeck M, Reynaerts A, Hofte H, Jansens S, Debeuckeleer M, Dean C, Zabeau M, Vanmontagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328(6125):33–37Google Scholar
  302. Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis related proteins. Eur J Plant Pathol 103:753–765Google Scholar
  303. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences 98(14):8139–8144Google Scholar
  304. Vandenberg JD (1990) Safety of four entomopathogens for cages adult honey bees (Hymenoptera: Apidae). J Econ Entomol 83:755–759Google Scholar
  305. Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007) Engineering resistance to Gemini viruses — review and perspectives. Plant Biotechnol 5:207–220Google Scholar
  306. Vazquez Rovere C, Asurmendi S, Hopp HE (2001) Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA-mediated and suggests the involvement of post-transcriptional gene silencing. Arch Virol 146:1337–53Google Scholar
  307. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19(2):195–216PubMedGoogle Scholar
  308. Wang YX, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 165:497–506Google Scholar
  309. Weise E (2007) Effect of genetically engineered alfalfa cultivate a debate, USA TodayGoogle Scholar
  310. Westgate ME, Lizaso J, Batchelor W (2003) Quantitative relationship between pollen shed density and grain yield in maize. Crop Sci 43:934–942Google Scholar
  311. Westwood J (1997) Growers endorse herbicide resistant crops, recognize need for responsible use, ISB News No 3Google Scholar
  312. Williams WP, Davis FM (1997) Maize germplasm with resistance to south-western corn borer and fall armyworm. In: Mihm JA (ed) Insect resistant maize: recent advances and utilization. Proceedings International Symposium, 27 Nov–3 Dec 1994. CIMMYT, Mexico, pp 226–229Google Scholar
  313. Wraight CL, Zangerl AR, Carroll MJ, Berenbaum MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proceedings of the National Academy of Sciences 14:7700–7703Google Scholar
  314. Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368PubMedGoogle Scholar
  315. Xanthopoulos FP, Kechagia UE (2000) Natural crossing in cotton (Gossypium hirsutum L.). Aust J Agr Res 51:979–983Google Scholar
  316. Xu DP, Xue QZ, McElroy D, Mawal Y, Hilder VA, Wu R (1996) Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Mol Breed 2(2):167–173Google Scholar
  317. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus (TYLCV) rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490PubMedGoogle Scholar
  318. Young BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301–307Google Scholar
  319. Zemetra RS, Hansen J, Mallory-Smith CA (1998) Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46:313–317Google Scholar
  320. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences 96:6523–6528Google Scholar
  321. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences 102:15383–15388Google Scholar
  322. Zhao J-Z, Cao J, Li Y, Collins HL, Roush R, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497PubMedGoogle Scholar
  323. Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neegaard E, Collinge DB, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41PubMedGoogle Scholar
  324. Zhou JM, TrifaY SH, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13:191–202PubMedGoogle Scholar
  325. Zhu-Salzman K, Ahn J-E, Salzman RA, Koiwa H, Shade RE, Balfe S (2003) Fusion of a soybean cysteine protease inhibitor and a legume lectin enhances anti-insect activity synergistically. Agr Forest Entomol 5:317–323Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Biology, Institute for Research on Environment and SustainabilityDevonshire Building, Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations