Using Self-adjoint Extensions in Shape Optimization

  • Antoine Laurain
  • Katarzyna Szulc
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 312)


Self-adjoint extensions of elliptic operators are used to model the solution of a partial differential equation defined in a singularly perturbed domain. The asymptotic expansion of the solution of a Laplacian with respect to a small parameter ε is first performed in a domain perturbed by the creation of a small hole. The resulting singular perturbation is approximated by choosing an appropriate self-adjoint extension of the Laplacian, according to the previous asymptotic analysis. The sensitivity with respect to the position of the center of the small hole is then studied for a class of functionals depending on the domain. A numerical application for solving an inverse problem is presented. Error estimates are provided and a link to the notion of topological derivative is established.


  1. 1.
    Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Bendsoe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, New York (2003)MATHGoogle Scholar
  3. 3.
    Demkov, I.N., Ostrovsky, V.N.: A Method of Zero Radius Potential in Atomic Physics. Leningrad University, Leningrad (1975) (Russian)Google Scholar
  4. 4.
    Garreau, S., Guillaume, Ph., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hackbusch, W.: Elliptic Differential Equations. Springer Series in Computationnal Mathematics, vol. 18. Springer, Berlin (1992)MATHGoogle Scholar
  6. 6.
    Henrot, A., Pierre, M.: Variation et optimisation de formes: une analyse géométrique. No. 48, de Mathématiques et Applications. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Kamotskii, I.V., Nazarov, S.A.: Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators. Amer. Math. Soc. Transl. 199(2) (2000)Google Scholar
  8. 8.
    Kanaun, S.K., Levin, V.M.: The Effective Field Method in the Mechanics of Composite Materials, Izdatel’stvo Petrozavodskogo Universiteta, Petrozavodsk (1993) (Russian)Google Scholar
  9. 9.
    Laurain, A.: Singularly Perturbed Domains in Shape Optimization, PhD Thesis, Université Henri Poincaré, Nancy 1 (2006)Google Scholar
  10. 10.
    Nazarov, S.A.: Asymptotic conditions at a point, self adjoint extensions of operators, and the method of matched asymptotic expansions. American Mathematical Society Translations 198(2), 77–125 (1999)CrossRefGoogle Scholar
  11. 11.
    Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. Journal de Mathématiques pures et appliquées 82, 125–196 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nazarov, S.A., Sokołowski, J.: Self adjoint extensions of differential operators in application to shape optimization. Comptes Rendus Mecanique 331(10), 667–672 (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Nazarov, S.A., Sokołowski, J.: Selfadjoint extensions for elasticity system in application to shape optimization. To appear in Bulletin of the Polish Academy of Sciences – MathematicsGoogle Scholar
  14. 14.
    Nazarov, S.A., Sokołowski, J.: Self adjoint extensions for the Neumann Laplacian in application to shape optimization, Les prépublications de l’institut Elie Cartan 9 (2003)Google Scholar
  15. 15.
    Pavlov, B.S.: The theory of extension and explicitly soluble models. Uspehi Mat. Nauk 42(6), 99–131 (1987); Engl. Transl. in Soviet Math. Surveys 42(6), 127–168 (1987)MATHGoogle Scholar
  16. 16.
    Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM Journal on Control and Optimization 37(4), 1251–1272 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sokołowski, J., Żochowski, A.: Optimality conditions for simultaneous topology and shape optimization. SIAM Journal on Control and Optimization 42(4), 1198–1221 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Antoine Laurain
    • 1
  • Katarzyna Szulc
    • 2
  1. 1.Department of Mathematics and Scientific ComputingUniversity of GrazGrazAustria
  2. 2.Institut Élie CartanUniversity Henri PoincaréNancy1France

Personalised recommendations