Advertisement

Heuristic Methods for Searching and Clustering Hierarchical Workflows

  • Michael Kastner
  • Mohamed Wagdy Saleh
  • Stefan Wagner
  • Michael Affenzeller
  • Witold Jacak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5717)

Abstract

Workflows are used nowadays in different areas of application. Emergency services are one of these areas where explicitly defined workflows help to increase traceability, control, efficiency, and quality of rescue missions. In this paper, we introduce a generic workflow model for describing fire fighting operations in different scenarios. Based on this model we also describe heuristics for calculating the similarity of workflows which can be used for searching and clustering.

Keywords

Similarity Measure Expectation Maximization Algorithm Child Action Hierarchy Level Conditional Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlia, D., Coppola, M.: Experiments in parallel clustering with dbscan. In: Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing, pp. 326–331. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Arthur, D., Vassilvitskii, S.: How Slow is the k-Means Method? In: Proceedings of the twenty-second annual symposium on Computational geometry, pp. 144–153. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)Google Scholar
  4. 4.
    Borman, S.: The expectation maximization algorithm – a short tutorial (July 2004), http://www.seanborman.com/publications/
  5. 5.
    Dellaert, F.: The expectation maximization algorithm. Technical Report GIT-GVU-02-20, Georgia Institute of Technology (February 2002)Google Scholar
  6. 6.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)Google Scholar
  7. 7.
    Fischer, L. (ed.): 2008 BPM & Workflow Handbook - Spotlight on Homan-Centric BPM, 1st edn. Future Strategies (2008)Google Scholar
  8. 8.
    Jung, J.-Y., Bae, J.: Workflow clustering method based on process similarity. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 379–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lundberg, J.: Principles of Workflow Support in Life Critical Situations. Blekinge Institute of Technology Licentiate Dissertion Series, vol. 2. Blekinge Institute of Technology (2007)Google Scholar
  10. 10.
    van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems. Cooperative Information Systems. MIT Press, Cambridge (2004)Google Scholar
  11. 11.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Kastner
    • 1
  • Mohamed Wagdy Saleh
    • 1
  • Stefan Wagner
    • 1
  • Michael Affenzeller
    • 1
  • Witold Jacak
    • 1
  1. 1.Heuristic and Evolutionary Algorithms Laboratory School of Informatics, Communications and Media - HagenbergUpper Austria University of Applied SciencesHagenbergAustria

Personalised recommendations