Symbolic Computations on Rings of Rational Functions and Applications in Control Engineering

  • N. P. Karampetakis
  • E. N. Antoniou
  • A. I. G. Vardulakis
  • S. Vologiannidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5717)


A collection of algorithms implemented in Mathematica 7.0, freely available over the internet, and capable to manipulate rational functions and solve related control problems using polynomial analysis and design methods is presented. The package provides all the necessary functionality and tools in order to use the theory of \(\it \Omega-\)stable functions, and is expected to provide the necessary framework for the development of several other algorithms that solve specific control problems.


Rational Function Close Loop System Stable Function Symbolic Computation Diophantine Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kucera, V.: Stability of discrete linear feedback systems. In: Proc. IFAC World Congr., Boston, MA, vol. 1, paper 44.1 (1975)Google Scholar
  2. 2.
    Kucera, V.: Diophantine equations in control - A survey. Automatica 29(6), 1361–1375 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Vardulakis, A.I.G.: Linear Multivariable Control - Algebraic Analysis and Synthesis Methods. John Willey & Sons Ltd., New York (1991)MATHGoogle Scholar
  4. 4.
    Youla, D.C., Jabr, H.A., Bongiorno, J.J.: Modern Wiener–Hopf design of optimal controllers. IEEE Trans. Autom. Control AC-21(3), 319–338 (1976)Google Scholar
  5. 5.
    Polynomial Toolbox for Matlab, Polyx Ltd.,
  6. 6.
    Control System Professional Version 2, Wolfram Research Inc.,
  7. 7.
    Control System Toolbox, The MathWorks Inc.,
  8. 8.
    Sima, V.: SLICOT-based advanced automatic control computations. In: Advances in Automatic Control, pp. 337–350. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  9. 9.
    The Control and Systems Library SLICOT, NICONET,
  10. 10.
    Pernebo, L.: An algebraic theory for the design of controllers for linear multivariable systems. I. Structure matrices and feedforward design. IEEE Trans. Automat. Control 26(1), 171–182 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • N. P. Karampetakis
    • 1
  • E. N. Antoniou
    • 2
  • A. I. G. Vardulakis
    • 1
  • S. Vologiannidis
    • 3
  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of SciencesTechnological Educational Institute of ThessalonikiThessalonikiGreece
  3. 3.Department of Information and Communication SciencesTechnological Educational Institute of SerresSerresGreece

Personalised recommendations