Advertisement

Real-Time Vision-Based Vehicle Detection for Rear-End Collision Mitigation Systems

  • D. Balcones
  • D. F. Llorca
  • M. A. Sotelo
  • M. Gavilán
  • S. Álvarez
  • I. Parra
  • M. Ocaña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5717)

Abstract

This paper describes a real-time vision-based system that detects vehicles approaching from the rear in order to anticipate possible rear-end collisions. A camera mounted on the rear of the vehicle provides images which are analysed by means of computer vision techniques. The detection of candidates is carried out using the top-hat transform in combination with intensity and edge-based symmetries. The candidates are classified by using a Support Vector Machine-based classifier (SVM) with Histograms of Oriented Gradients (HOG features). Finally, the position of each vehicle is tracked using a Kalman filter and template matching techniques. The proposed system is tested using image data collected in real traffic conditions.

Keywords

Oriented Gradient Computer Vision Technique Lane Detection Lane Departure Warning Local Contrast Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sotelo, M.A., Nuevo, J., Bergasa, L.M., Ocaña, M., Parra, I., Fernández, D.: Road Vehicle Recognition in Monocular Images. In: Proceedings of IEEE ISIE, pp. 1471–1476 (2005)Google Scholar
  2. 2.
    Derong, Y., Yuanyuan, Z., Dongguo, L.: Fast Computation of Multiscale Morphological Operations for Local Contrast Enhancement. In: Proceedings of Engineering in Medicine and Biology 27th Annual Conference (2005)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of IEEE CVPR, pp. 886–893 (2005)Google Scholar
  4. 4.
    Sotelo, M.A., Barriga, J., Fernández, D., Parra, I., Naranjo, J.E., Marrón, M., Álvarez, S., Gavilán, M.: Vision-Based Blind Spot Detection Using Optical Flow. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 1113–1118. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Balcones
    • 1
  • D. F. Llorca
    • 1
  • M. A. Sotelo
    • 1
  • M. Gavilán
    • 1
  • S. Álvarez
    • 1
  • I. Parra
    • 1
  • M. Ocaña
    • 1
  1. 1.Department of ElectronicsUniversity of AlcaláMadridSpain

Personalised recommendations