Modelling Differential Structures in Proof Assistants: The Graded Case

  • Jesús Aransay
  • César Domínguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5717)

Abstract

In this work we propose a representation of graded algebraic structures and morphisms over them appearing in the field of Homological Algebra in the proof assistants Isabelle and Coq. We provide particular instances of these representations in both systems showing the correctness of the representation. Moreover the adequacy of such representations is illustrated by developing a formal proof of the Trivial Perturbation Lemma in both systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aransay, J., Ballarin, C., Rubio, J.: A Mechanized Proof of the Basic Perturbation Lemma. Journal of Automated Reasoning 40(4), 271–292 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aransay, J., Domínguez, C.: A Case-Study in Algebraic Manipulation Using Mechanised Reasoning Tools. To appear in International Journal of Computer Mathematics, doi:10.1080/00207160802676604Google Scholar
  3. 3.
    Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Coquand, T., Spiwack, A.: Towards Constructive Homological Algebra in Type Theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 40–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Domínguez, C., Lambán, L., Rubio, J.: Object-Oriented Institutions to Specify Symbolic Computation Systems. Rairo - Theoretical Informatics and Applications 41, 191–214 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Domínguez, C., Rubio, J., Sergeraert, F.: Modelling Inheritance as Coercion in the Kenzo System. Journal of Universal Computer Science 12(12), 1701–1730 (2006)Google Scholar
  7. 7.
  8. 8.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lambán, L., Pascual, V., Rubio, J.: An Object-Oriented Interpretation of the EAT System. Applicable Algebra in Engineering, Communication and Computing 14(3), 187–215 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin Sciences Mathématiques 126, 389–412 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    The Coq Proof Assistant (2009), http://coq.inria.fr
  12. 12.
    The Isabelle Proof Assistant (2009), http://isabelle.in.tum.de
  13. 13.
    Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana S. Scott. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jesús Aransay
    • 1
  • César Domínguez
    • 1
  1. 1.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroño, La RiojaSpain

Personalised recommendations