Assigning Location Information to Display Individuals on a Map for Web People Search Results

  • Harumi Murakami
  • Yuya Takamori
  • Hiroshi Ueda
  • Shoji Tatsumi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5839)

Abstract

Distinguishing people with identical names is becoming more and more important in Web search. This research aims to display person icons on a map to help users select person clusters that are separated into different people from the result of person searches on the Web. We propose a method to assign person clusters with one piece of location information. Our method is comprised of two processes: (a) extracting location candidates from Web pages and (b) assigning location information using a local search engine. Our main idea exploits search engine rankings and character distance to obtain good location information among location candidates. Experimental results revealed the usefulness of our proposed method. We also show a developed prototype system.

Keywords

location information Web people search map interface character distance information extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guha, R., Garg, A.: Disambiguating people in search. Stanford University (2004)Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Sato, S., Kazama, K., Fukuda, K.: Distinguishing between People on the Web with the Same First and Last Name by Real-world Oriented Web Mining. IPSJ Transactions on Databases 46(8), 26–36 (2005)Google Scholar
  7. 7.
    Wan, X., Gao, J., Li, M., Ding, G.: Person Resolution in Person Search Results: WebHawk. In: CIKM 2005. Proceedings of the Fourteenth ACM Conference on Information and Knowledge Management, pp. 163–170 (2005)Google Scholar
  8. 8.
    Bekkerman, R., McCallum, A.: Disambiguating Web Appearances of People in a Social Network. In: WWW 2005, Proceedings of the Fourteenth World Wide Web Conference, pp. 463–470 (2005)Google Scholar
  9. 9.
    Kozareva, Z., Moraliyski, R., Dias, G.: Web People Search with Domain Ranking, Text, Speech, and Dialogue. In: LNCS, pp. 133–140. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Artiles, J., Gonzalo, J., Sekine, S.: The SemEval-2007 WePS Evaluation: Establishing a Benchmark for the Web People Search Task. In: Proceedings of the Fourth International Workshop on Semantic Evaluations, pp. 64–69 (2007)Google Scholar
  11. 11.
    Task Definition of Attribute Extraction Subtask for WePS-2, http://nlp.uned.es/weps/weps2/WePS2_Attribute_Extraction.pdf
  12. 12.
    Clusty the clustering search engine, http://clusty.com/
  13. 13.
    Google Experimental Search, http://www.google.com/experimental/
  14. 14.
    McCurley, K.S.: Geospatial Mapping and Navigation on the Web. In: WWW 2001, pp. 221–229 (2001)Google Scholar
  15. 15.
    Morimoto, H., Fujimoto, N., Nagaya, T., Idehara, H., Hagihara, K.: A System for Web Retrieval of Address-Related Information. IEICE Trans. D J90-D(2), 245–256 (2007)Google Scholar
  16. 16.
    Arai, I., Kawaguchi, Y., Fujikawa, K., Sunahara, H.: Geocrawler; Web Indexer for Store Search based on Geographical Information and Evaluation Information on Personal Web Sites. IPSJ Journal 48(7), 2319–2327 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Harumi Murakami
    • 1
  • Yuya Takamori
    • 1
  • Hiroshi Ueda
    • 2
  • Shoji Tatsumi
    • 2
  1. 1.Graduate School for Creative CitiesOsaka City UniversityOsakaJapan
  2. 2.Graduate School of EngineeringOsaka City UniversityOsakaJapan

Personalised recommendations