Enabling Effective User Interactions in Content-Based Image Retrieval

  • Haiming Liu
  • Srđan Zagorac
  • Victoria Uren
  • Dawei Song
  • Stefan Rüger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5839)


This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.


uInteract four-factor user interaction model content-based image retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bates, M.J.: Where should the person stop and the information search interface start? Information Processing and Management 26(5), 575–591 (1990)CrossRefGoogle Scholar
  2. 2.
    Campbell, I.: Interactive evaluation of the ostensive model using a new test collection of images with multiple relevance assessments. Journal of Information Retrieval 2(1) (2000)Google Scholar
  3. 3.
    Deselaers, T., Keysers, D., Ney, H.: Fire – flexible image retrieval engine: Imageclef 2004 evaluation. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 688–698. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Heesch, D., Rüger, S.: Performance boosting with three mouse clicks-relevance feedback for CBIR. In: Proceeding of the European Conference on IR Research 2003 (2003)Google Scholar
  5. 5.
    Hopfgartner, F., Urban, J., Villa, R., Jose, J.: Simulated testing of an adaptive multimedia information retrieval system. In: Proceeding of Content-Based Multimedia Indexing (CBMI), pp. 328–335 (2007)Google Scholar
  6. 6.
    Liu, H., Uren, V., Song, D., Rüger, S.: A four-factor user interaction model for content-based image retrieval. In: Proceeding of the 2nd international conference on the theory of information retrieval, ICTIR (2009)Google Scholar
  7. 7.
    Müller, H., Müller, W., Marchand-Maillet, S., Pun, T.: Strategies for positive and negative relevance feedback in image retrieval. In: Proceedings of the International Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain, September 2000, vol. 1, pp. 1043–1046 (2000)Google Scholar
  8. 8.
    Pickering, M.J., Rüger, S.: Evaluation of key frame-based retrieval techniques for video. Computer Vision and Image Understanding 92(2-3), 217–235 (2003)CrossRefGoogle Scholar
  9. 9.
    Ruthven, I., Lalmas, M., van Rijsbergen, K.: Incorporating user search behaviour into relevance feedback. Journal of the American Society for Information Science and Technology 54(6), 528–548 (2003)CrossRefGoogle Scholar
  10. 10.
    Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Information Processing Management 34(5), 599–621 (1998)CrossRefGoogle Scholar
  11. 11.
    Urban, J., Jose, J.M.: Ego: A personalized multimedia management and retrieval tool. International Journal of Intelligent Systems 21, 725–745 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Urban, J., Jose, J.M., van Rijsbergen, K.: An adaptive technique for content-based image retrieval. Multimedia Tools and Applications 31, 1–28 (2006)CrossRefGoogle Scholar
  13. 13.
    White, R.W., Ruthven, I.: A study of interface support mechanisms for interactive information retrieval. Journal of the American Society for Information Science and Technology (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Haiming Liu
    • 1
  • Srđan Zagorac
    • 1
  • Victoria Uren
    • 1
  • Dawei Song
    • 2
  • Stefan Rüger
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK
  2. 2.School of ComputingThe Robert Gordon UniversityAberdeenUK

Personalised recommendations