Towards True Random Number Generation in Mobile Environments

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5838)


In our paper, we analyze possibilities to generate true random data in mobile devices such as mobile phones or pocket computers. We show how to extract arguably true random data with a probability distribution ε = 2− 64 close to the uniform distribution in the trace distance. To postprocess the random data acquired from the camera we use a randomness extractor based on the Carter-Wegman universal2 families of hashing functions. We generate the data at the bit rate approximatively 36 bits per second – we used such a low bit rate only to allow statistical testing at a reasonable level of confidence.


min-entropy random number generator randomness extractor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BST03]
    Barak, B., Shaltiel, R., Tromer, E.: True random number generators secure in a changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. [CW79]
    Carter, J.L., Wegman, M.N.: Universal hash functions. Journal of Computer and System Sciences 18, 143–144 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [GW96]
    Goldberg, I., Wagner, D.: Randomness and the Netscape Browser. Dr. Dobb’s Journal, Special issue on Encoding: Encryption, Compression, and Error Correction (1996)Google Scholar
  4. [IL89]
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudorandom generation from one-way functions. In: Proceeding of the 21st ACM Symposium on Theory of Computing (1989)Google Scholar
  5. [IZ89]
    Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, pp. 248–253 (1989)Google Scholar
  6. [KMC07]
    Klingsheim, A.N., Moen, V., Hole, K.J.: Challenges in Securing Networked J2ME Applications. Computer 40, 24–30 (2007)CrossRefGoogle Scholar
  7. [KSM07]
    Krhovjak, J., Svenda, P., Matyas, V.: The Sources of Randomness in Mobile Devices. In: Proceeding of the 12th Nordic Workshop on Secure IT Systems, Reykjavik University, pp. 73–84 (2007)Google Scholar
  8. [OS07]
    Lowe, G.: OpenSSL Security Advisory – OpenSSL FIPS Object Module Vulnerabilities (2007),
  9. [DS08]
    Bello, L.: Debian Security Advisory – OpenSSL predictable random number generator (2008),
  10. [Sha02]
    Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. Bulletin of the EATCS 77, 67–95 (2002)MathSciNetzbMATHGoogle Scholar
  11. [Sho96]
    Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996), Google Scholar
  12. [SMH05]
    Simonsen, K.I.F., Moen, V., Hole, K.J.: Attack on Sun’s MIDP Reference Implementation of SSL. In: Proceeding 10th Nordic Workshop on Secure IT Systems, Tartu University, pp. 96–103 (2005)Google Scholar
  13. [SZ99]
    Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. SIAM Journal on Computing 28(4), 1433–1459 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations