Technical and Human Aspects of Historic Rockslide-Dammed Lakes and Landslide Dam Breaches

  • C. Bonnard
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 133)


The historical presentation of some 12 major landslide dam cases in the Alps which occurred between the first century AD and the present time, and for which significant information is available, allows the formulation of specific conditions which are generally met with respect to the development of the phenomena, their direct and indirect consequences on the population and the possible prevention and mitigation actions that can be carried out. Three major recent cases in Switzerland and South America, in which human preventive action was essential to save many lives and property, are then briefly commented, especially with respect to the need for timely and well-coordinated action by the Civil Defence, the Army and the local authorities, in order to avoid more dramatic consequences due to the formation and subsequent breaching of the landslide dam lake. This analysis points out the necessity of assessing the potential landslide scenarios and the related risks properly so as to limit the possible consequences of such dramatic events in the future.


Debris Flow Landslide Mass Civil Defence Slide Mass Opposite Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sincere thanks are expressed to my collegues Jordi Moreno who contributed to the preparation of the figures and to Karine Barone who mastered the typing and editing tasks of this paper.


  1. 1.
    Abele, G. (1974) Bergstürze in den Alpen, Wissenschaftliche Alpenvereinshefte, München H25, 230 S.Google Scholar
  2. 2.
    Basabe, P. et al. (1996) Prevención de desastres naturales en la cuenca del río Paute. Libro “Sin plazo para la esperanza”. Escuela politécnica nacional, Quito-Ecuador, 271–287.Google Scholar
  3. 3.
    Bonnard, Ch. (2004) La Buzza di Biasca. Contribution au Dict. Historique de la Suisse.Google Scholar
  4. 4.
    Bonnard, Ch., Forlati, F. and Scavia, C. (eds.) (2004) Identification and Mitigation of Large Landslide Risks in Europe: Advances in Risk Assessment. Balkema, Leiden, 317 p.Google Scholar
  5. 5.
    Cavallin, A. and Martinis, B. (1974) Studio geologico della grande frana di Borta (Ampezzo), Cronaca del Soc. Alp. Friuliana 58, 297–319.Google Scholar
  6. 6.
    Durville, J.-L., Effendiantz, L., Pothérat, P. and Marchesini, P. (2004) The Séchilienne Landslide, in C. Bonnard, F. Forlati, and C. Scavia (eds.) Identification and Mitigation of Large Landslide Risks in Europe: Advances in Risk Assessment. Balkema, Leiden, pp. 253–269.Google Scholar
  7. 7.
    Eisbacher, G.H. and Clague, J.J. (1984) Destructive Mass Movements in High Mountains: Hazard and Management. Geol. Survey of Canada, Canada, 230 p.Google Scholar
  8. 8.
    Engel, Th. (1986) Nouvelles méthodes de mesure et d’analyse pour l’étude des mouvements du sol en terrains instables. Thèse n°601, Ecole Polythechnique Fédérale de Lausanne.Google Scholar
  9. 9.
    Gabus, J.H. (1990) Atlas géologique de la Suisse, feuille No 1285, Les Diablerets, Office fédéral des eaux et de la géologie, Bienne.Google Scholar
  10. 10.
    Gaziev, E. (1984) Study of the Usoi Landslide in Pamir, Proc. 4th Int. Symp. on Landslides, Toronto 1, 511–514.Google Scholar
  11. 11.
    Govi, M. (1990) Mouvements de masse récents et anciens dans les Alpes italiennes, Proc. 5th Int. Symp. on Landslides, Lausanne 3, 1509–1514.Google Scholar
  12. 12.
    Heim, A. (1932) Bergsturz und Menschenleben. Fretz & Wasmuth Verlag, Zürich, 227 p.Google Scholar
  13. 13.
    ISDR (2000) Usoi Landslide Dam and Lake Sarez, UN-ISDR Prevention Series N° 1. 115 p.Google Scholar
  14. 14.
    Kojean, E. and Hutchinson, J.N. (1978) Mayunmarca rockslide and debris flow, Peru, in B. Voight (ed.), Rockslides and Avalanches, Vol. 1. Elsevier, Amsterdam, pp. 315–361.Google Scholar
  15. 15.
    Lee, K.L. and Duncan, J.M. (1975) Landslide of April 25, 1974 on the Mantaro River, Peru. Committee on Natural Disasters, National Research Council. 72 p. Washington: National Academy of Sciences.Google Scholar
  16. 16.
    Montandon, F. (1933) Chronologie des grands éboulements alpins, du début de l’ère chrétienne à nos jours. Soc. de Géographie, Genève, Matériaux pour l’Etude des Calamités N° 32, 271–340.Google Scholar
  17. 17.
    Mougin, P. (1914) Les Torrents de la Savoie. Société d’Histoire naturelle de Savoie, Grenoble, 1251 p.Google Scholar
  18. 18.
    Noverraz, F. and Bonnard, Ch. (1992) L’écroulement rocheux de Randa, près de Zermatt, Proc. 6th Int. Symp. on Landslides, Christchurch 1, 167–170.Google Scholar
  19. 19.
    Pilot, G. and Durville, J.-L. (1990) Les mouvements de terrain dans les Alpes françaises, Proc. 5th Int. Symp. on Landslides, Lausanne 3, 1515–1537.Google Scholar
  20. 20.
    Schindler, C. and Eisenlohr, T. (1992) Bergsturz Grossgufer bei Randa. Geologisch-geotechnische Expertise. ETH-Zürich, 83 p. + Annexes.Google Scholar
  21. 21.
    Schöneich, Ph.(2000) Impact of Rockfalls on soft water saturated floodplain sediments. Three examples from the Swiss Rhone Valley. Proc. 8th Int. Symp. on Landslides, Cardiff, Vol. 3, pp. 1327–1332. London, Thomas Telford.Google Scholar
  22. 22.
    Schuster, R.L. (ed) (1986) Landslide Dams: Processes, Risk and Mitigation, Geot. Spec. Publ. No 3. American Society of Civil Engineers, New York, NY, 164 p.Google Scholar
  23. 23.
    Vulliet, L. and Bonnard, Ch. (1996) The Chlöwena landslide: Prediction with a viscous model, Proc. 7th Int. Symp. on Landslides, Trondheim 3, 1525–1530.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Soil Mechanics LaboratorySwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations