The Formation and Behaviour of Natural and Artificial Rockslide Dams; Implications for Engineering Performance and Hazard Management

  • Stephen G. Evans
  • Keith B. Delaney
  • Reginald L. Hermanns
  • Alexander Strom
  • Gabriele Scarascia-Mugnozza
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 133)


The formation and behaviour of natural and artificial rockslide dams are reviewed to update the well-known work of Costa and Schuster [1]. Rockslide dams block surface drainage to form upstream lakes. They may occur naturally due to landslides or as a result of engineered rock slope failure. As evidenced by the 2010 Hunza event (Pakistan), the stability of rockslide dams is a major consideration in landslide risk assessment in mountain terrain, particularly with respect to the possibility of a destructive downstream flood resulting from a breach of the dam. The damming of a river by a rockslide may require immediate engineering response to mitigate the hazard. However, failure by breaching is less frequent than long-term stability. These issues are examined with reference to nine case histories of rockslide dams and rockslide-dammed lakes; Gohna (1894), Rio Barrancas (1914), Condor-Sencca (1945), Mayunmarca (1974), La Josefina (1993), Tsao-Ling (1999), Yigong (2000), Tangjiashan (2008), and the Hunza (2010). The case histories also illustrate the utility of digital terrain data (especially the SRTM-3 data set obtained in February 2000) and remote sensing imagery to obtain accurate estimates of the impoundment volumes and other geomorphic data on rockslide-dammed lakes. Methods of estimating peak breach discharge and downstream flood effects exist but are still largely empirical in nature. Measures to mitigate hazard associated with rockslide-dammed lakes include the construction of a spillway over the rockslide debris, a by-pass tunnels through the abutments of the debris dam, the implementation of dam and lake-level monitoring and failure warning systems to mitigate downstream damage. A review of some well-documented examples show that these measures have had been applied with mixed success in the past. Natural rockslide dams are commonly used for foundations for conventional constructed dams. Artificial rockslide dams are created by rock slope failure induced by large-scale explosion (blast-fill dams). The largest blast-fill dam yet constructed is the Medeo Dam, a debris flow retention structure near Alma-Ata, Kazakhstan. Rockslide dams and their geomorphic effects may create an important legacy in the landscape through massive accumulations of lake sediments, impact on river channels, and effects on river long-profiles.


Debris Flow Lake Level Rock Avalanche Downstream Face Outburst Flood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbott, J. (1848) Inundation of the Indus, taken from the lips of an eye-witness A.D. 1842, Journal of the Asiatic Society of Bengal 17, 230–232.Google Scholar
  2. 2.
    Abele, G. (1974) Bergstürze in den Alpen, ihre Verbeitung, Morphologie und Folgeerscheinungen, Wissenschaftliche Alpenverein 25, 1–230.Google Scholar
  3. 3.
    Abele, G. (1984) Derrumbes de montana y morrenas en los Andes chilenos, Revista de Geografía Norte Grande 11, 17–30.Google Scholar
  4. 4.
    Adams, J. (1981) Earthquake-dammed lakes in New Zealand, Geology 9, 215–219.CrossRefGoogle Scholar
  5. 5.
    Adushkin, V.V. (2000) Explosive initiation of creative processes in nature, Combustion, Explosion, and Shock Waves 36, 695–703.CrossRefGoogle Scholar
  6. 6.
    Adushkin, V.V. (2006) Mobility of rock avalanches triggered by underground nuclear explosions, in S.G. Evans, G., Scarascia-Mugnozza, A. Strom and R. Hermanns (eds.), Landslides from Massive Rock Slope Failure, Vol. 49 NATO Science Series IV, Earth and Environmental Sciences. Springer, Dordrecht, pp. 267–284.CrossRefGoogle Scholar
  7. 7.
    Adushkin, V.V., Pernik, L.M. and Zykov, Y.N. (1993) Modeling of explosion-triggered rock slides for construction of the Kambarata 1 hydroelectric power dam, Republic of Kyrgyzstan, Landslide News 7, 7–9.Google Scholar
  8. 8.
    Alden, W.C. (1928) Landslide and flood at Gros Ventre, Wyoming, Transactions American Institue of Mining and Metallurgical Engineers 76, 347–360.Google Scholar
  9. 9.
    Anderson, G.P. (1948) Waikaremoana; the problem of lake control, Proceedings, New Zealand Institution of Engineers 34, 508–526.Google Scholar
  10. 10.
    Antinao, J.L. and Gosse, J. (2009) Large rockslides in the southern central Andes of Chile (32–34.5°S): Tectonic control and significance for Quaternary landscape evolution, Geomorphology 104, 117–133.CrossRefGoogle Scholar
  11. 11.
    Antognini, M. and Volpers, R. (2002) A Late Pleistocene age for the Chironico rockslide (Central Alps, Ticino, Switzerland), Bulletin of Applied Geology 7, 113–125.Google Scholar
  12. 12.
    Asanza, M., Plaza-Nieto, G., Yepes, H., Shuster, R.L. and Ribadeneira, S. (1992) Landslide blockage of the Pisque River, northern Ecuador. Proc. 6th International Symp. on Landslides, Christchurch, New Zealand, pp. 1229–1234.Google Scholar
  13. 13.
    Asian Development Bank (2006) Tajikistan: Emergency Baipaza Landslide Stabilization Project. Completion Report Project 36233, 25 p.Google Scholar
  14. 14.
    Barney, K.R. (1960) Madison canyon slide, Civil Engineering, August 1960, 72–75.Google Scholar
  15. 15.
    Becher, J. (1859) The flooding of the Indus. Letter addressed to R.H. Davies, Secretary to the Government of Punjab and its dependencies, Journal of the Asiatic Society of Bengal 28, 219–228.Google Scholar
  16. 16.
    Becker, A., Davenport, C.A., Haeberli, W., Burga, C., Perret, R., Flisch, A. and Keller, W.A. (2000) The Fulnau landslide and former Lake Seewen in the northern Swiss Jura Mountains, Eclogae Geologicae Helvetiae 93, 91–305.Google Scholar
  17. 17.
    Berkey, C.P. (1935) Foundation conditions for Grand Coulee and Bonneville projects, Civil Engineering 5, 67–71.Google Scholar
  18. 18.
    Bromhead, E.N., Coppola, L. and Rendell, H.M. (1996). Valley-blocking landslide dams in the eastern Italian Alps, Proc. 7th Int. Symp. on Landslides, Trondheim, Vol. 2, pp. 655–660.Google Scholar
  19. 19.
    Brooks, G.R. and Hickin, E.J. (1991) Debris avalanche impoundments of Squamish River, Mount Cayley area, southwestern British Columbia, Canadian Journal of Earth Sciences 28, 1375–1385.CrossRefGoogle Scholar
  20. 20.
    Burgisser, H.M., Gansser, A. and Pika, J. (1982) Late Glacial lake sediments of the Indus valley area, northwestern Himalayas, Eclogae Geologicae Helvetiae 75, 51–63.Google Scholar
  21. 21.
    Canuti, P., Frassoni, A. and Natale, L. (1994) The 1993 La Josefina rockslide and Rio Paute landslide dam, Ecuador. 2) Failure of the Rio Paute landslide dam, Landslide News 8, 6–7.Google Scholar
  22. 22.
    Canuti, P., Casagli, N. and Ermini, L. (1998) Inventory and analysis of landslide dams in the northern Appenine as a model for induced flood hazard forecasting, in K. Andah (ed.), Managing Hydro-Geological Disasters in a Vulnerable Environment. CNR-GNDCI Publication 1900, pp. 189–202.Google Scholar
  23. 23.
    Capra, L. (2007) Volcanic natural dams: Identification, stability, and secondary effects, Natural Hazards 43, 45–61.CrossRefGoogle Scholar
  24. 24.
    Capra, L. and Macías, J.L. (2002) The cohesive Naranjo debris-flow deposit (10 km3): A dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima volcano (Mexico), Journal of Volcanology and Geothermal Research 117, 213–235.CrossRefGoogle Scholar
  25. 25.
    Carter, N.R. (1948) Construction work at Waikaremoana upper power development, Proceedings, New Zealand Institution of Engineers 34, 172–230.Google Scholar
  26. 26.
    Casagli, N. and Ermini., L. (1999) Geomorphic analysis of landslide dams in the northern Appennines, Transaction Japanese Geomorphological Union 20, 219–249.Google Scholar
  27. 27.
    Casagli, N., Ermini, L. and Rosati, G. (2003) Determining grain size distribution of the material composing landslide dams in the Northern Appennines: Sampling and processing methods, Engineering Geology 69, 83–97.CrossRefGoogle Scholar
  28. 28.
    Cencetti, C., Fredduzzi, A., Marchesini, I., Nacccini, M. and Tacconi, P. (2006) Some considerations about the simulation of breach channel erosion on landslide dams, Computational Geosciences 10, 201–219.CrossRefGoogle Scholar
  29. 29.
    Cenderelli, D.A. (2000) Floods from natural and artificial dam failures, in E.E. Wohl (ed.), Inland Flood Hazards; Human, Riparian, and Aquatic Communities. Cambridge University Press, New York, NY, pp. 73–103.CrossRefGoogle Scholar
  30. 30.
    Chai, H.J., Liu, H.C., Zhang, Z.Y. and Wu, Z.W. (2000) The distribution, causes and effects of damming landslides in China, Journal of the Chengdu Institute of Technology 27, 1–19.Google Scholar
  31. 31.
    Chang, D.S. and Zhang, L.M. (2010) Simulation of the erosion processes of landslide dams due to overtopping considering variations in soil erodibility along depth, Natural Hazards and Earth System Sciences 10, 933–946.CrossRefGoogle Scholar
  32. 32.
    Chang, S.C. (1984) Tsao-Ling landslide and its effect on a reservoir project, Proc. 4th International Symposium on Landlsides, Toronto, ON, 1: pp. 469–473.Google Scholar
  33. 33.
    Chen, C.-Y., Chen, T.-C., Yu, F.-C. and Hung, F.-Y. (2004) A landslide dam breach induced debris flow – a case study on downstream hazard areas delineation, Environmental Geology 47, 91–101.CrossRefGoogle Scholar
  34. 34.
    Chen, R.-F., Chang, K.-J., Angelier, F., Chan, Y.-C., Deffontaine, B., Lee, C.-T. and Lin, M.-L. (2006) Topographical changes revealed by high-resolution airborne LIDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi Earthquake, Engineering Geology 88, 160–172.CrossRefGoogle Scholar
  35. 35.
    Chen, T.-C., Lin, M.-L. and Hung, J.-J. (2003) Pseudostatic analysis of Tsao-Ling rockslide caused by Chi–Chi earthquake, Engineering Geology 71, 31–47.CrossRefGoogle Scholar
  36. 36.
    Chen, X-Q., Cui, P., Li, Y. and Zhao, W-Y. (2010) Emergency response to the Tangjiashan landslide-dammed lake resulting from the 2008 Wenchuan Earthquake, China, Landslides, doi10:1007/s10346-010-0236-6.Google Scholar
  37. 37.
    Chen, Y.-J., Zhou, F., Feng, Y. and Xia, Y.C. (1992) Breach of a naturally embanked dam on Yalong River, Canadian Journal of Civil Engineering 19, 811–818.CrossRefGoogle Scholar
  38. 38.
    Cheng, G., Wang, X., He, X., Fan, J. and Fan, J. (2008) Outburst risk of barrier lakes in Sichuan, China, Journal of Mountain Science 5, 189–193.CrossRefGoogle Scholar
  39. 39.
    Chichasov, V.Y. and Shapovalov, G.I. (1977) Seepage regime in the Medeo Dam following accumulation of a mudflow, Hydrotechnical Construction 11, 1216–1219.CrossRefGoogle Scholar
  40. 40.
    Chigira, M., Wang, W.-N., Furuya, T. and Kamai, T. (2003) Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi–Chi earthquake, Taiwan, Engineering Geology 68, 259–273.CrossRefGoogle Scholar
  41. 41.
    Chigira, M., Wu, X., Inokuchi, T. and Wang, G. (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China, Geomorphology 118, 225–238.CrossRefGoogle Scholar
  42. 42.
    Clague, J.J. and Evans, S.G. (1994) Formation and failure of natural dams in the Canadian Cordillera, Geological Survey of Canada Bulletin 464, 35 pp.Google Scholar
  43. 43.
    Clerici, A. and Perego, S. (2000) Simulation of the Parma River blockage by the Corniglio landslide (Northern Italy), Geomorphology 33, 1–23.CrossRefGoogle Scholar
  44. 44.
    Code, J.A. and Sirhindi, S. (1986) Engineering implications of impoundment of the Upper Indus river, Pakistan, by an earthquake-induced landslide, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk, and Mitigation, Geotechnical Special Publication No. 3. American Society of Civil Engineers, New York, NY, pp. 97–109.Google Scholar
  45. 45.
    Coleman, A. (1949) Al vaciarse un lago cordillerano, provoca una gran inundación, Capitulo III, Mi vida de ferroviario inglés en la Argentina: 1887–1948, Bahia Blanca, 1949, pp. 241–250.Google Scholar
  46. 46.
    Coleman, S.E., Andrews, D.P. and Webby, M.G. (2002) Overtopping breaching of noncohesive homogeneous embankments, Journal of Hydraulic Engineering 128, 829–838.CrossRefGoogle Scholar
  47. 47.
    Contreras, D.A. and Keefer, D.K. (2009) Implications of the fluvial history of the Wacheqsa River for hydrologic engineering and water use at Chavín de Huántar, Peru, Geoarchaeology 24, 589–618.CrossRefGoogle Scholar
  48. 48.
    Coppola, L. and Bromhead, E.N. (2008) Fossil landslide dams and their exploitation for hydropower in the Italian Dolomites, Bollettino della Societa Geologica Italiana 127, 163–171.Google Scholar
  49. 49.
    Cossart, E. and Fort, M. (2008) Consequences of landslide dams on alpine river valleys: Examples and typology from the French Southern Alps, Norsk Geografisk Tidsskrift 62, 75–88.CrossRefGoogle Scholar
  50. 50.
    Costa, C.H. and Gonzalez Diaz, E.F. (2007) Age constraints and paleoseismic implication of rock avalanches in the northern Patagonian Andes, Argentina, Journal South American Earth Sciences 24, 48–57.CrossRefGoogle Scholar
  51. 51.
    Costa, J.E. (1988) Floods from dam failures, in V.R. Baker, R.C. Kochel, and P.C. Patton (eds.), Flood Geomorphology. John Wiley and Sons, New York, NY, pp. 439–463.Google Scholar
  52. 52.
    Costa, J.E. (1991) Nature, mechanics, and mitigation of the Val Pola landslide, Valtellina, Italy, 1987–1988, Zeitschrift für Geomorphologie, N.F. 35, 15–38.Google Scholar
  53. 53.
    Costa, J.E. and Schuster, R.L. (1988) The formation and failure of natural dams, GSA Bulletin 100, 1054–1068.CrossRefGoogle Scholar
  54. 54.
    Costa, J.E. and Schuster, R.L. (1991) Documented historical landslide dams from around the world. United States Geological Survey Open-File Report 91–239, 486 p.Google Scholar
  55. 55.
    Cui, P., Dang,C., Zhuang, J-Q., You, Y., Chen, X-Q. and Scott, K.M. (2010) Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): risk assessment, mitigation strategy, and lessons learned, Environmental Earth Science, doi 10.1007/s12665-010-0749-2.Google Scholar
  56. 56.
    Cui, P., Zhu, Y.-Y., Han, Y.-S., Chen, X.-Q. and Zhuang, J.-Q. (2009) The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation, Landslides 6, 209–223.CrossRefGoogle Scholar
  57. 57.
    Dai, F.C., Lee, C.F., Deng, J.H. and Tham, L.G. (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China, Geomorphology 65, 205–221.CrossRefGoogle Scholar
  58. 58.
    Davies, T.R., Manville, V., Kunz, M. and Donadini, L. (2007) Modeling landslide dambreak flood magnitudes:case study, Journal of Hydraulic Engineering 133, 713–720.CrossRefGoogle Scholar
  59. 59.
    DeGraff, J.V., James, A. and Breheny, P. (2010) The formation and persistence of the Matthieu Landslide-Dam lake, Dominica, W.I., Environmental and Engineering Geoscience 16, 73–89.CrossRefGoogle Scholar
  60. 60.
    Dong, J.-J., Tung, Y.-H., Chen, C.-C., Liao, J.-J. and Pan, Y.-W. (2009) Discriminant analysis of the geomorphic characteristics and stability of landslide dams, Geomorphology 110, 162–171.CrossRefGoogle Scholar
  61. 61.
    Doyle, B.C., Levine, N.S., Newhard, J.M.L. and Kyer, J.A. (2010) The Mahras Dag complex landslide, Upper Goksu River Valley, Turkey, Environmental and Engineering Geoscience 16, 91–105.CrossRefGoogle Scholar
  62. 62.
    Drew, F. (1875) The Jummoo and Kashmir Territories; A Geographical Account. Edward Stanford, London, 568 p.Google Scholar
  63. 63.
    Droz, P. and Spasic-Gril, L. (2006) Lake Sarez mitigation project: A global risk analysis, Proceedings 22nd Congress on Large Dams, Q.36-R75, Barcelona, Spain.Google Scholar
  64. 64.
    Duman, T.Y. (2009) The largest landslide dam in Turkey: Tortum landslide, Engineering Geology 104, 66–79.CrossRefGoogle Scholar
  65. 65.
    Dunning, S.A., Petley, D.N. and Strom, A.L. (2005) The morphologies and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard, in O. Hungr, R. Couture, E. Eberhardt, and R. Fell (eds.), Landslide Risk Management. Balkema, Amsterdam, pp. 691–704.Google Scholar
  66. 66.
    Dunning, S.A., Mitchell, W.A., Rosser, N.J. and Petley, D.N. (2007) The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005, Engineering Geology 93, 130–144.CrossRefGoogle Scholar
  67. 67.
    Dunning, S.A., Rosser, N.J., Petley, D.N. and Massey, C.R. (2006) Formation and failure of the Tsatichhu landslide dam, Bhutan, Landslides 3, 107–113.CrossRefGoogle Scholar
  68. 68.
    Eisbacher, G.H. and Clague, J.J. (1984) Destructive mass movements in high mountains: Hazard and management, Geological Survey of Canada, Paper 84–16, 230 p.Google Scholar
  69. 69.
    Emerson, F.B. (1925) 180-ft. dam formed by landslide in Gros Ventre Canyon, Engineering News Record 95, 467–468.Google Scholar
  70. 70.
    Engineering News Record (1927) Further data on failure of Gros Ventre “Dam”, Engineering News Record 99, 600–601.Google Scholar
  71. 71.
    Engineering News Record (1964) Russians blast through landslide dam, Engineering News Record 172, p. 24.Google Scholar
  72. 72.
    Ermini, L. and Casagli, N. (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surface Processes and Landforms 28, 31–47.CrossRefGoogle Scholar
  73. 73.
    Etkin, M.B. and Azarkovich, A.E. (2001) Determination of optimal blast parameters for construction of blast-created rock-fill dams, Hydrotechnical Construction 35, 421–427.CrossRefGoogle Scholar
  74. 74.
    Evans, S.G. (1986) The maximum discharge of outburst floods caused by the breaching of man-made and natural dams, Canadian Geotechnical Journal 23, 385–387.CrossRefGoogle Scholar
  75. 75.
    Evans, S.G. (1986) Landslide damming in the Cordillera of western Canada, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk and Mitigation. American Society of Civil Engineers Geotechnical Special Publication No. 3, pp. 111–130., ASCE, New York, N.Y.Google Scholar
  76. 76.
    Evans, S.G. (2006) Single-event landslides resulting from massive rock slope failure: Characterizing their frequency and impact on society, in S.G. Evans, G. Scarascia-Mugnozza, A. Strom and R. Hermanns (eds.), Landslides from Massive Rock Slope Failure, Vol. 49 NATO Science Series IV, Earth and Environmental Sciences. Springer, Dordrecht, pp. 53–73.CrossRefGoogle Scholar
  77. 77.
    Evans, S.G. (2006) The formation and failure of landslide dams: an approach to risk assessment, Italian Journal of Engineering Geology and Environment, Special Issue 1, 15–19.Google Scholar
  78. 78.
    Evans, S.G. and Brooks, G.R. (1991) Prehistoric debris avalanches from Mount Cayley volcano, British Columbia, Canadian Journal of Earth Sciences 28, 1365–1374.CrossRefGoogle Scholar
  79. 79.
    Evans, S.G., Scarascia-Mugnozza, G., Strom, A. and Hermanns, R.L. (2006) Landslides from massive rock slope failure and associated phenomena, in S.G. Evans, G. Scarascia-Mugnozza, A.L. Strom and R.L. Hermanns (eds.), Landslides from Massive Rock Slope Failure, Vol. 49 NATO Science Series IV, Earth and Environmental Sciences. Springer, Dordrecht, pp. 3–52.CrossRefGoogle Scholar
  80. 80.
    Falconer, H. (1841) Letter to the Secretary of the Asiatic Society, on the recent cataclysm of the Indus, Journal of the Asiatic Society of Bengal 10, 615–620.Google Scholar
  81. 81.
    Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. (2007) The Shuttle Radar Topography Mission, Reviews of Geophysics 45, RG2004, doi: 10.1029/2005RG000183.Google Scholar
  82. 82.
    Fauqué, L.E., Baumann, V., Rosas, M., González, M.A., Coppolecchia, M., Di Tommasso, I., Wilson, C.G.J. and Hermanns, R.L. (2005) Natural dams in the Mendoza River Basin, Mendoza, Province, Argentina, Proc. Int. Conf. on Landslide Risk Management, Canada, Vancouver, Balkema, Rotterdam, CD.Google Scholar
  83. 83.
    Ferrer, C. (1999) Represamientos y rupturas de embalses naturales (lagunas de obstrución) como efectos cosísmicos: Algunos ejemplos en los Andes venezolanos, Revista Geográfica Venezolana 40, 109–121.Google Scholar
  84. 84.
    Fidel, L. (2007) Deslizamiento traslacional – flujo de detritos de Mayunmarca, Perú, in Movimientos en Masa en la región Andina: Una guía para la evaluación de amenazas, Proyecto Multinacional Andino: Geosciencias para las Comunidades Andinas, Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional 4, 213–217.Google Scholar
  85. 85.
    Fort, M. (1987) Sporadic morphogenesis in a continental subduction setting: An example from the Annapurna Range, Nepal Himalaya, Zeitschrift fur Geomorphologie Suppl.-Bd. 63, 9–36.Google Scholar
  86. 86.
    Fort, M. (2000) Glaciers and mass wasting processes: Their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal), Quaternary International 65/66, 101–119.CrossRefGoogle Scholar
  87. 87.
    Fort, M., Burbank, D.W. and Freytet, P. (1989) Lacustrine sedimentation in a semiarid alpine setting: An example from Ladakh, northwest Himalaya, Quaternary Research 31, 332–350.CrossRefGoogle Scholar
  88. 88.
    Fort, M., Cossart, E. and Arnaud-Fassetta, G. (2010) Catastrophic landslides and sedimentary budgets, in I., Alcantara-Ayala, and A.S., Goudie (eds.), Geomorphological Hazards and Disaster Prevention. Cambridge University Press, Cambridge, United Kingdom, pp. 75–85.CrossRefGoogle Scholar
  89. 89.
    Fort, M., Cossart, E. and Arnaud-Fassetta, G. (2010) Hillslope-channel coupling in the Nepal Himalayas and threat to man-made structures: the middle Kali Gandaki valley, Geomorphology 124, 178–199.CrossRefGoogle Scholar
  90. 90.
    Fread, D.L. (1988) BREACH; an Erosion Model for Earthen Dam Failures, US National Weather Service Report. NOAA, Silver Spring, MD, 31 p.Google Scholar
  91. 91.
    Fread, D.L. (1993): NWS FLDWAV Model: The replacement of DAMBRK for dam-break flood prediction, Proceedings: 10th Annual Conference of the Association of State Dam Safety Officials, Kansas City, Missouri, pp. 177–184.Google Scholar
  92. 92.
    Fread, D.L. and Lewis, J.M. (1988) FLDWAV: A generalized flood routing model, Hydraulic Engineering, Proceedings of 1988 Conference, HY Div, ASCE, Colorado Springs, CO, pp. 668–673.Google Scholar
  93. 93.
    Froehlich, D.C. (1995) Peak outflow from breached embankment dam, Journal of Water Resources Planning and Management 121, 90–97.CrossRefGoogle Scholar
  94. 94.
    Froehlich, D.C. (2008) Embankment dam breach parameters and their uncertainties, Journal of Hydraulic Engineering 134, 1708–1721.CrossRefGoogle Scholar
  95. 95.
    Galadini, F., Colini, L., Giaccio, B., Messina, P., Salvi, S. and Sposato, A. (2003) Persisting effects of the Colfiorito (central Italy) Pleistocene paleo-landslide in the planning of land use: Upper Palaeolithic and proto-historical coexistence and Antique-Modern modifications, Env. Geol. 43, 621–634.Google Scholar
  96. 96.
    Gaziev, E. (1984) Study of the Usoy Landslide in Pamir. Proc. 4th Int. Symp. on Landslides, Toronto, ON, Vol. 1, pp. 511–515.Google Scholar
  97. 97.
    Gerasimov, G.B., Zinevich, Y.N. and Shapovalov, G.I. (1979) The Medeo mudflow-protection dam, Hydrotechnical Construction 13, 914–921.CrossRefGoogle Scholar
  98. 98.
    Gerasimov, V.A. (1963) The Issyk catastrophe of 1963 and its impact on the geomorphology of the Issyk River valley, Izv. Vses. Geograf. Kratkiye Soobs 97, 541–547.Google Scholar
  99. 99.
    Glass, J.H. (1896) The great landslip at Gohna, in Garhwal, and the measures adopted to prevent serious loss of life, Journal. of Society of Arts 44, 431–445.Google Scholar
  100. 100.
    Glazyrin, G.Y. and Reyzvikh, V.N. (1968) Computation of the flow hydrograph for the breach of landslide lakes, Soviet Hydrology 5, 492–496.Google Scholar
  101. 101.
    Glicken, H., Meyer, W. and Sabol, M. (1989) Geology and ground-water hydrology of Spirit Lake Blockage, Mount St Helens, Washington, with implications for lake retention: United States Geological Survey Bulletin 1789, 33 p.Google Scholar
  102. 102.
    González Diaz, E.F., Giaccardi, A.D. and Costa, C.H. (2001) La avalancha de rocas del rio Barrancas (Cerro Pelan), norte del Neuquen; su relacion con la catastrofe del Rio Colorado (29/12/1914), Revista de la Asociación Geologica Argentina 56, 466–480.Google Scholar
  103. 103.
    González Díaz, E.F., Folguera, A., Costa, C.H., Wright, E. and Ellisondo, M. (2006) Los grandes deslizamientos de la región Septentrional Neuguina entre los 36°–38°S: Una propuesta de inducción sísmica, Bulletin de la Asociación Geologica Argentina 61, 197–217.Google Scholar
  104. 104.
    Goswami, U., Sarma, J.N. and Patgiri, A.D. (1999) River channel changes of the Subansiri in Assam, India, Geomorphology 30, 227–244.CrossRefGoogle Scholar
  105. 105.
    Goto, A.S., Muramatsu, T. and Teraoka, Y. (2010) Timing of the landslide-dammed lake triggered by earthquake, at Toyama River, Central Japan, Radiocarbon 52, 1090–1097.Google Scholar
  106. 106.
    Gotz, A. and Zimmermann, M. (1993) The 1991 rock slides in Randa: Causes and consequences, Landslide News 7, 22–25.Google Scholar
  107. 107.
    Gregoretti, C., Maltauro, A. and Lanzoni, S. (2010) Laboratory experiments on the failure of coarse homogeneous sediment natural dams on a sloping bed, Journal of Hydraulic Engineering 136, 868–879.CrossRefGoogle Scholar
  108. 108.
    Groeber, P. (1916) Informe sobre las causas que han producido las crecientes del Rio Colorado (Territorios del Neuquen y La Pampa) en 1914, Direccion General de Minas, Geologia e Hidrologia, 11 (Serie B, Geologia), Buenos Aires, 29 p.Google Scholar
  109. 109.
    Gupta, A.C. (1974) Lakes of sorrow, The Journal of Civil Engineering (India) 58, 6–11.Google Scholar
  110. 110.
    Guthrie, R.H. and Evans, S.G. (2007) Work, persistence, and formative events: The geomorphic impact of landslides, Geomorphology 88, 266–275.CrossRefGoogle Scholar
  111. 111.
    Hadley, J.B. (1964) Landslides and related phenomena accompanying the Hegben Lake Earthquake of August 17, 1959. United States Geological Survey Professional Paper 435-K, pp. 107–138.Google Scholar
  112. 112.
    Han, Z.S. (2003) Large-scale landslide-debris avalanche in Tibet, China (1) April-June 2000 Yigong Landslide, Tibet China, Landslide News 14–15, 22–23.Google Scholar
  113. 113.
    Hancox, G.T., McSaveney, M.J., Manville, V.R. and Davies, T.R. (2005) The October 1999 Mt. Adams rock avalanche and subsequent landslide dam-break flood and effects in Poera River, Westland, New Zealand, New Zealand Journal of Geology and Geophysics 48, 683–705.CrossRefGoogle Scholar
  114. 114.
    Harden, C.P. (2001) Sediment movement and catastrophic events: The 1993 rockslide at La Josefina, Ecuador, Physical Geography 22, 305–320.Google Scholar
  115. 115.
    Harp, E.L. and Crone, A.J. (2006) Landslides triggered by the October 8, 2005, Pakistan Earthquake and associated landslide-dammed reservoirs, United States Geological Survey Open File Report 2006–1052, 10 p.Google Scholar
  116. 116.
    Harp, E.L., Wilson, R. and Wieczorek, G. (1981) Landslides from the February 4, 1976, Guatemala Earthquake, United States Geological Survey Professional Paper 1203-A, 35 p.Google Scholar
  117. 117.
    Harrison, A. (1974) Madison Canyon slide modification by the U.S. Army Corps of Engineers, in B. Voight and M.A. Voight (eds.), Rock Mechanics and the American Northwest. pp. 138–141.Google Scholar
  118. 118.
    Harrison, J.V. and Falcon, N.L. (1938) An ancient landslip at Saidmarreh in southwestern Iran, Journal of Geology 46, 296–309.CrossRefGoogle Scholar
  119. 119.
    Hayden, B. and Ryder, J.M. (1991) Prehistoric cultural collapse in the Lillooet Area, American Antiquity 56, 50–65.CrossRefGoogle Scholar
  120. 120.
    Hayden, B. and Ryder, J.M. (2003) Cultural collapses in the Northwest: A reply to Ian Kuijt, American Antiquity 68, 157–160.CrossRefGoogle Scholar
  121. 121.
    Hayden, E.W. (1956) The Gros Ventre Slide (1925) and the Kelly Flood (1927), 11th Annual Field Conference, Wyoming Geological Association, pp. 20–23.Google Scholar
  122. 122.
    Heim, A. (1932) Bergsturz und Menschenleben. Fretz and Wasmuth Verlag, Zurich, 218 p.Google Scholar
  123. 123.
    Heim, A. and Gansser, A. (1939) Central Himalaya: Geological Observations of the Swiss Expedition 1936, Denk. Der Schweiz. Natur. Gesell., Vol. 73. p. 245.Google Scholar
  124. 124.
    Hejun, C., Hanchao, L. and Zhuoyuan, A. (1998) Study on the categories of landslide-damming of rivers and their characteristics, Journal of the Chengdu Institute of Technology 25, 411–416.Google Scholar
  125. 125.
    Henderson, W. (1859) Memorandum on the nature and effects of the flooding of the Indus, 10th August 1858, as ascertained at Attock, Journal of the Asiatic Society of Bengal 28, 199–228.Google Scholar
  126. 126.
    Hermanns, R.L., González Díaz, E.F., Folguera, A. and Mardones, M. (2003) Large massive rock slope failures, landslide dams, related valley evolution, and their association with the tectonic setting in the Argentine and Chilean Andes between 36 and 38°S, 10th Congreso Geologico Chileno, Concepción, CD, 5 p.Google Scholar
  127. 127.
    Hermanns, R.L., Naumann, R., Folguera, A. and Pagenkopf, A. (2004) Sedimentologic analyses of deposits of a historic landslide dam failure in Barrancas valley causing the catastrophic 1914 Rio Colorado flood, northern Patagonia, Argentina, Proc. 9th Int. Symp. on Landslides, Rio de Janeiro, Balkema, Rotterdam, Vol. 2, pp. 1439–1445.Google Scholar
  128. 128.
    Hermanns, R.L., Niedermann, S., Ivy-Ochs, S. and Kubik, P.W. (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses, Landslides 1, 113–122.CrossRefGoogle Scholar
  129. 129.
    Hermanns, R.L., Niedermann, S., Villanueva Garcia, A. and Schellenberger, A. (2006) Rock avalanching in the NW Argentine Andes as a result of complex interactions of lithologic, structural and topographic boundary conditions, climate change and active tectonics, in S.G. Evans, G. Scarascia-Mugnozza, A. Strom and R. Hermanns (eds.), Landslides from Massive Rock Slope Failure, v. 49, NATO Science Series IV, Earth and Environmental Sciences. Springer, Dordrecht, pp. 497–520.CrossRefGoogle Scholar
  130. 130.
    Hermanns, R.L. and Schellenberger, A. (2008) Quaternary tephrochronology helps define conditioning factors and trigger mechanisms of rock avalanches in NW Argentina, Quaternary International 178, 261–275.CrossRefGoogle Scholar
  131. 131.
    Hewitt, K. (1968) Records of natural damming and related events in the Upper Indus basin, Indus: Journal of Water Power Devevelopment Authority 10, 11–19.Google Scholar
  132. 132.
    Hewitt, K. (1998) Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan, Geomorphology 26, 47–80.CrossRefGoogle Scholar
  133. 133.
    Hewitt, K. (1999) Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalya, northern Pakistan, Quaternary Research 51, 220–237.CrossRefGoogle Scholar
  134. 134.
    Hewitt, K. (2002) Postglacial landform and sediment associations in a landslide-fragmented river ystem: The TransHimalayan Indus streams, Central Asia, in K. Hewitt, M.L. Byrne, M. English, and G. Young (eds.), Landscapes of Transition. Kluwer Academic, Dordrecht, pp. 63–91.Google Scholar
  135. 135.
    Hewitt, K. (2002) Styles of rock avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic Landslides: Effects, Occurrence, and Mechanisms, Vol. XV. Reviews in Engineering Geology, Geological Society of America, Boulder, CO, pp. 345–377.Google Scholar
  136. 136.
    Hewitt, K. (2006) Disturbance regime landscapes: Mountain drainage systems interrupted by large rockslides, Progress in Physical Geography 30, 365–393.CrossRefGoogle Scholar
  137. 137.
    Hewitt, K. (2009) Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh massif, Upper Indus basin, northern Pakistan, Quaternary Science Reviews 28, 1055–1069.CrossRefGoogle Scholar
  138. 138.
    Hewitt, K. (2009) Glacially conditioned rock-slope failures and disturbance-regime landscapes, Upper Indus Basin, northern Pakistan. in J. Knight and S. Harrison (eds.), Periglacial and Paraglacial Processes and Environments, Geological Society London, Special Publication 320, 235–255.Google Scholar
  139. 139.
    Hewitt, K. (2010) Gifts and perils of landslides, American Scientist 98, 410–419.Google Scholar
  140. 140.
    Holland, T.H. (1894) Report on the Gohna Landslip, Garhwal, Records of Geological Survey of India 27, 55–65.Google Scholar
  141. 141.
    Hsu, Y.-S. and Hsu, Y.-H. (2009) Impact of earthquake-induced dammed lakes on channel evolution and bed mobility: Case study of the Tsaoling landslide dammed lake, Journal of Hydrology 374, 43–55.CrossRefGoogle Scholar
  142. 142.
    Hu, X., Huang, R., Shi, Y., Lu, X., Zhu, H. and Wang, X. (2009) Analysis of blocking river mechanism of Tangjiashan Landslide and dam-breaking mode of its barrier dam, Chinese Journal of Rock Mechanics and Engineering 28, 181–189.Google Scholar
  143. 143.
    Hung, J.-J., Lee, C.-T. and Lin, M.-L. (2002) Tsao-Ling rockslides Taiwan, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic Landslides: Effects, Occurrence, and Mechanisms, Vol. XV. Reviews in Engineering Geology, Geological Society of America, Boulder, Co. pp. 91–115.Google Scholar
  144. 144.
    Hutchinson, J.N. (2001) Reading the ground: Morphology and geology in site appraisal (The Fourth Glossop Lecture), Quarterly Journal of Engineering Geology and Hydrogeology 34, 7–50.CrossRefGoogle Scholar
  145. 145.
    Hutchinson, J.N. and Kojan, E. (1975) The Mayunmarca landslide of 25th April, 1974, Peru. UNESCO Report Serial No. 3124 Paris, UNESCO.Google Scholar
  146. 146.
    ICOLD (2000) Blast fill dams. ICOLD Bulletin E01, 74 p.Google Scholar
  147. 147.
    Inoue, K., Mori, T., Itou, T. and Kabeyama, Y. (2005) Outburst and disasters of Takaisoyama and Hose landslide dams (1892) in East Shikoku (in Japanese with English abstract), Journal of Japan Society of Erosion Control Engineering 58, 3–12.Google Scholar
  148. 148.
    Iverson, R.L., Scilling, S.P. and Vallance, J.W. (1998) Objective delineation of lahar-inundation hazard zones, GSA Bulletin 110, 972–984.CrossRefGoogle Scholar
  149. 149.
    Jain, S.K., Agarwal, P.K. and Singh, V.P. (2007) Hydrology and Water Resources of India. Springer, The Netherlands, 1258 p.Google Scholar
  150. 150.
    Jin, M. and Fread, D.L. (1997) One-dimensional routing of mud/debris flows using NWS FLDWAV model, Proc. 1st International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, CA, pp. 687–696.Google Scholar
  151. 151.
    Kargel, J.S., Leonard, G., Crippen, R.E., Delaney, K.B., Evans, S.G. and Schneider, J. (2010) Satellite monitoring of Pakistan’s rockslide-dammed Lake Gojal, EOS 91, 394–395.CrossRefGoogle Scholar
  152. 152.
    Khalturin, V.I., Rautian, T.G., Richards, P.G. and Leith, W.S. (2005) A review of nuclear testing by the Soviet Union at Novaya Zemlya, 1955–1990, Science and Global Security 13, 1–42.CrossRefGoogle Scholar
  153. 153.
    Khan, M. (1969) Influence of Upper Indus basin on the elements of the flood hydrograph at Tarbela-Attock, in Floods and their Computation, Vol. 2. IAHS Publication 85, pp. 918–925.Google Scholar
  154. 154.
    King, J., Loveday, I. and Schuster, R.L. (1989) The 1985 Bairaman landslide dam and resulting debris flow, Papua New Guinea, Quarterly Journal of Engineering Geology 22, 257–270.CrossRefGoogle Scholar
  155. 155.
    Kojan, E. and Hutchinson, J.N. (1978) Mayunmarca rockslide and debris flow, Peru, in B. Voight (ed.), Rockslides and Avalanches, 1, Natural Phenomena. Elsevier, Amsterdam, NY, pp. 315–361.Google Scholar
  156. 156.
    Korup, O. (2002) Recent research on landslide dams – a literature review with special attention to New Zealand, Progress in Physical Geography 26, 206–235.CrossRefGoogle Scholar
  157. 157.
    Korup, O. (2004) Geomorphometric characteristics of New Zealand landslide dams, Engineering Geology 73, 13–35.CrossRefGoogle Scholar
  158. 158.
    Korup, O. (2005) Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: Fundamental problems and approaches, Geomorphology 66, 167–188.CrossRefGoogle Scholar
  159. 159.
    Korup, O. (2005) Large landslides and their effect on sediment flux in South Westland, New Zealand, Earth Surface Processes and Landforms 30, 305–323.CrossRefGoogle Scholar
  160. 160.
    Korup, O. (2005) Geomorphic imprint of landslides on alpine river systems, southwest New Zealand, Earth Surface Processes and Landforms 30, 783–800.CrossRefGoogle Scholar
  161. 161.
    Korup, O. (2006) Rock-slope failure and the river long profile, Geology 34, 45–48.CrossRefGoogle Scholar
  162. 162.
    Korup, O. and Tweed, F. (2007) Ice, moraine, and landslide dams in mountain terrain, Quaternary Science Reviews 26, 3406–3422.CrossRefGoogle Scholar
  163. 163.
    Korup, O., McSaveney, M.J. and Davies, T.R.H. (2004) Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand, Geomorphology 61, 189–207.CrossRefGoogle Scholar
  164. 164.
    Korup, O., Strom, A.L. and Weidinger, J.T. (2006) Fluvial response to large rock-slope failures: Examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand, Geomorphology 78, 3–21.Google Scholar
  165. 165.
    Korup, O., Montgomery, D.R. and Hewitt, K. (2010) Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes, Proceedings National Academy of Sciences,
  166. 166.
    Korup, O., Densmore, A.L. and Schlunegger, F. (2010) The role of landslides in mountain river evolution, Geomorphology 120, 77–90.CrossRefGoogle Scholar
  167. 167.
    Kuperman, V.L., Kornakov, G.I. and Korchevskii, V.F. (1977) Construction of an experimental dam on Burlykiya River, Hydrotechnical Construction 11, 465–469.CrossRefGoogle Scholar
  168. 168.
    Kuzmin, K.K. (1974) The catastrophic flash flood of 1973 and the Medeo Dam, Hydrotechnical Construction 8, 203–206.CrossRefGoogle Scholar
  169. 169.
    Lawrence, D.B. and Lawrence, E.G. (1958) Bridge of the Gods legend; its origin, history and dating, Mazama 40, 33–41.Google Scholar
  170. 170.
    Lee, K.L. and Duncan, J.M. (1975) Landslide of April 25, 1974 on the Mantaro River, Peru. National Academy of Sciences, Washington, DC, 72 p.Google Scholar
  171. 171.
    Li, M.-H., Hsu, M.-H., Hsieh, L.-S. and Teng, W.-H. (2002) Inundation potentials analysis for Tsao-Ling landslide lake formed by Chi–Chi earthquake in Taiwan, Natural Hazards 25, 289–303.CrossRefGoogle Scholar
  172. 172.
    Li, T. and Wang, S. (1992) Landslide Hazards and their Mitigation in China. Science Press, Beijing, 84 p.Google Scholar
  173. 173.
    Li, T., Schuster, R.L. and Wu, J. (1986) Landslide dams in south-central China, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk and Mitigation. American Society of Civil Engineers Geotechnical Special Publication No. 3, pp. 146–162., ASCE, New York, N.Y.Google Scholar
  174. 174.
    Litovchenko, A.F. (1964) The catastrophic mudflow on the Issyk River, Meteorologiya i Gidrologiya 1, 39–42 (in Russian).Google Scholar
  175. 175.
    Lubbock, G. (1894) The Gohna Lake, The Geographical Journal 4, 457.Google Scholar
  176. 176.
    Lui, N., Zhang, J.-X., Lin, W., Cheng, W.-Y. and Chen, Z.-Y. (2009) Draining Tangjiashan Barrier Lake after Wenchuan Earthquake and the flood propagation after the dam break, Science in China Series E; Technological Sciences 52, 801–809.CrossRefGoogle Scholar
  177. 177.
    Lui, L.Y., Wu, Y.H., Zuo, Z.L., Chen, Z.C., Wang, X.X. and Zhang, W.J. (2009) Monitoring and assessment of barrier lakes formed after the Wenchuan earthquake based on multitemporal remote sensing data, Journal of Applied Remote Sensing 3, pp. 031665- 031665-12.Google Scholar
  178. 178.
    MacDonald, T.C. and Langridge-Monopolis, J. (1984) Breaching characteristics of dam failures, Journal Hydraulic Engineering 110, 567–586.CrossRefGoogle Scholar
  179. 179.
    Machida, H. (1966) Rapid erosional development of mountain slopes and valleys caused by large landslides in Japan, Geographical Reports of Tokyo Metropolitan University 1, 55–78.Google Scholar
  180. 180.
    Manville, V. (2001) Techniques for evaluating the size of potential dam-break floods from natural dams, Institute of Geological and Nuclear Sciences Science Report 2001/28, 72 p.Google Scholar
  181. 181.
    Mandrone, G., Clerici, A. and Tellini, C. (2007) Evolution of a landslide creating a temporary lake: Successful prediction, Quaternary International 171–172, 72–79.CrossRefGoogle Scholar
  182. 182.
    Marchi, L., Michieli, F. and Zuppi, G.M. (2006) The Alleghe Lake (Dolomites, Italy): Environmental role and sediment management, in J., Krecek, and M., Haigh (eds.), Environmental Role of Wetlands in Headwaters, Vol. 63, NATO Science Series IV Earth and Environmental Sciences. Springer, Dordrecht, p. 161–172.CrossRefGoogle Scholar
  183. 183.
    Mason, K. (1929) Indus Floods and Shyok Glaciers, Himalayan Journal 1, 10–29.Google Scholar
  184. 184.
    Mathur, L.P. (1953) The Assam Earthquake of 15th August, 1950; a short note on factual observations, in M.B. Ramachandra Rao A Compilation of papers on the Assam Earthquake of August 15, 1950. The Central Board of Geophysics (India), compiler, Publication No. 1, pp. 56–60.Google Scholar
  185. 185.
    Meyer, W., Sabol, M.A. and Schuster, R.L. (1986) Landslide dammed lakes at Mount Saint Helens, Washington, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk and Mitigation. American Society of Civil Engineers, New York, NY, Geotechnical Special Publication No. 3, pp. 21–41.Google Scholar
  186. 186.
    Meyer, W., Schuster, R.L. and Sabol, M.A. (1994) Potential for seepage erosion of landslide dam, Journal of Geotechnical Engineering 120, 1211–1229.CrossRefGoogle Scholar
  187. 187.
    Meyer, W., Sabol, M.A., Glicken, H.X. and Voight, B. (1985) The effects of groundwater, slope stability, and seismic hazard on the stability of the South Fork Castle Creek blockage in the Mt St Helens area, Washington. USGS Professional Paper 1345, 42 p.Google Scholar
  188. 188.
    Mizuyama, T., Satohuka, Y., Ogawa, K. and Mori, T. (2006) Estimating the outflow discharge from landslide dam outbursts, Proceedings INTERPRAEVENT Symposium Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Niigata, Japan, Vol. 1, pp. 365–377.Google Scholar
  189. 189.
    Montadon, F. (1933) Chronologie des grands éboulements alpins du début de l’ère chrétienne à nos jours, Matériaux pour l’étude des calamités 32, 271–340.Google Scholar
  190. 190.
    Mora, S., Madrigal, C., Estrada, J. and Schuster, R.L. (1993) The 1992 Rio Toro landslide dam, Costa Rica, Landslide News 7, 19–22.Google Scholar
  191. 191.
    Nash, T., Bell, D., Davies, T. and Nathan, S. (2008) Analysis of the formation and failure of Ram Creek landslide dam, South Island, New Zealand, New Zealand Journal of Geology and Geophysics 51, 187–193.CrossRefGoogle Scholar
  192. 192.
    Nedriga, V.P., Pokrovskii, G.I., Korchevskii, V.F. and Petrov, G.N. (1978) Full-scale investigations of seepage in an experimental blast-fill dam, Hydrotechnical Construction 12, 679–683.CrossRefGoogle Scholar
  193. 193.
    Nicoletti, P.G. and Parise, M. (2002) Seven landslide dams of old seismic origin in southeastern Sicily (Italy), Geomorphology 46, 203–222.CrossRefGoogle Scholar
  194. 194.
    Nicoletti, P.G., Parise, M. and Miccadei, E. (1993) The Scanno rock avalanche (Abruzzi, south-central Italy), Boll. Soc. Geol., It. 112, 523–535.Google Scholar
  195. 195.
    Niyazov, B.S. and Degovets, A.S. (1975) Estimation of the parameters of catastrophic mudflows in the basins of the Lesser and Greater Almatinka Rivers, Soviet Hydrology 2, 75–80.Google Scholar
  196. 196.
    O’Brien, J.S. (2003) Reasonable assumptions in routing a dam break mudflow, Proc. 3rd International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, 1, 683–693.Google Scholar
  197. 197.
    O‘Brien, J.S., Julien, P.Y. and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation, Journal of Hydraulic Engineering, ASCE, 119, 244–261.CrossRefGoogle Scholar
  198. 198.
    O‘Connor, J.E. (2004) The evolving landscape of the Columbia River Gorge: Lewis and Clark and cataclysms on the Columbia, Oregon Historical Quarterly 105, 390–421.Google Scholar
  199. 199.
    O’Connor, J.E. and Beebee, R.A. (2009) Floods from natural rock-material dams, in D.M. Burr, P.A. Carling and V.R. Baker (eds.), Megafloods on Earth and Mars. Cambridge University Press, Cambridge, United Kingdom, p. 128–171.CrossRefGoogle Scholar
  200. 200.
    O‘Connor, J.E. and Costa, J.E. (2004) The world’s largest floods, past and present: Their causes and magnitudes, United States Geological Survey Circular 1254, 13 p.Google Scholar
  201. 201.
    O’Connor, J.E., Grant, G.E. and Costa, J.E. (2002) The geology and geography of floods, in P. Kyle House, R.H. Webb, V.R. Baker, D.R. Levish (eds.), Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology Water Science and Application Volume 5. American Geophysical Union, Washington, DC, pp. 359–385.Google Scholar
  202. 202.
    Ohmori, H. (1992) Dynamics and erosion rate of the river running on a thick deposit supplied by a large landslide, Zeitschrift fur Geomorphologie 36, 129–140.Google Scholar
  203. 203.
    Oldham, R.D. (1923) The Pamir Earthquake of 18th February, 1911, Quarterly Journal of the Geological Society 79, 237–245.CrossRefGoogle Scholar
  204. 204.
    Ouchi, S. and Mizuyama, T. (1989) Volume and movement of Tombi landslide in 1858, Japan, Transaction Japan Geomorphological Union 10, 27–51.Google Scholar
  205. 205.
    Ouimet, W.B., Whipple, K.X., Royden, L.H., Sun, Z. and Chen, Z. (2007) The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Pateau (Sichuan, China), GSA Bulletin 119, 1462–1476.CrossRefGoogle Scholar
  206. 206.
    Owen, L.A. (1996) Quaternary lacustrine deposits in a high-energy semi-arid mountain environment, Karakoram Mountains, northern Pakistan, Journal of Quaternary Science 11, 461–483.CrossRefGoogle Scholar
  207. 207.
    Palmer, L. (1977) Large landslides of the Columbia River Gorge, Oregon and Washington, Geological Society of America, Reviews in Engineering Geology III, 69–83.Google Scholar
  208. 208.
    Page, W.D. and Mattsson, L. (1981) Landslide lakes near Santa Fe de Antioquia, Revista CIAF 6, 469–478.Google Scholar
  209. 209.
    Paquier, A. (2005) Dam break modelling, in D.W. Knight and A.Y. Shamseldin (eds.), River Basin Modelling for Flood Risk Mitigation. Taylor Francis, pp. 463–472.Google Scholar
  210. 210.
    Paquier, A. (2006) Case studies in dam break modelling, in D.W. Knight and A.Y. Shamseldin (eds.), River Basin Modelling for Flood Risk Mitigation. Taylor Francis, London, pp. 473–480.Google Scholar
  211. 211.
    Perrin, N.D. and Hancox, G.T. (1992) Landslide dammed lakes in New Zealand-preliminary studies on their distribution, causes and effects, Proc. 6th International Symposium on Landslides, Christchurch, New Zealand, 1457–1466.Google Scholar
  212. 212.
    Perucca, L.P. and Angillieri, M.Y.E. (2009) Evolution of a debris-rock slide causing a natural dam: The flash flood of Rio Santa Cruz, Province of San Juan – November 12, 2005, Natural Hazards 50, 305–320.CrossRefGoogle Scholar
  213. 213.
    Petrov, G.N., Reifman, L.S. and Khusankhodzhaev, F.Z. (1975) Dam construction by blasting, Hydrotechnical Construction 9, 938–944.CrossRefGoogle Scholar
  214. 214.
    Phartiyal, B., Sharma, A., Srivastava, P. and Ray, Y. (2009) Chronology of relict lake deposits in the Spiti River, NW Trans Himalaya:Implications to Late Pleistocene-Holocene climate-tectonic perturbations, Geomorphology 108, 264–272.CrossRefGoogle Scholar
  215. 215.
    Pierce, M.W., Thornton, C.I. and Abt, S.R. (2010) Predicting peak outflow from breached embankment dams, Journal of Hydrologic Engineering, ASCE 15, 338–349.CrossRefGoogle Scholar
  216. 216.
    Pirocchi, A. (1992) Laghi di sbarramento per frana nelle Alpi: Tipologia ed evoluzione, Atti I Convegno Nazionale Giovani ricercatori in Geologia Applicata, Gargnano. CUEM, Ric. Sci. Educaz. Perm., Suppl., 93; 127–136.Google Scholar
  217. 217.
    Plaza-Nieto, G., Yepes, H. and Schuster, R.L. (1990) Landslide dam on the Pisque River, northern Ecuador, Landslide News 4, 2–4.Google Scholar
  218. 218.
    Plaza-Nieto, G. and Zevallos, O. (1994) The 1993 La Josefina rockslide and Rio Paute landslide dam, Ecuador. 1) The La Josefina rockslide, Landslide News 8, 4–6.Google Scholar
  219. 219.
    Poddar, M.C. (1953) A short note on the Assam Earthquake of 15th August, 1950, In M.B. Ramachandra Rao A Compilation of papers on the Assam Earthquake of August 15, 1950. The Central Board of Geophysics (India), compiler, Publication No. 1, pp. 38–42.Google Scholar
  220. 220.
    Ponce, V.M. and Tsivoglou, A.J. (1981) Modeling gradual dam breaches, Journal of the Hydraulics Division, American Society of Civil Engineers 107(HY7), 829–838.Google Scholar
  221. 221.
    Popov, N. (1990) Debris flows and their control in Alma-Ata, Kazakh SSR, USSR, Landslide News 4, 25–27.Google Scholar
  222. 222.
    Pratt-Sitaula, B., Garde, M., Burbank, D.W., Oskin, M., Heimsath, A. and Gabet, E. (2007) Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record, Quaternary Research 68, 111–120.CrossRefGoogle Scholar
  223. 223.
    Preobrajensky, J. (1920) The Usoi Landslide, Geol. Comm., Papers on Applied Geol., 14, 21 p. (In Russian).Google Scholar
  224. 224.
    Pushkarenko, V.P. and Nikitin, A.M. (1988) Experience in the regional investigation of the state of mountain lake dams in Central Asia and the character of breach mudflow formation, In E.A. Koslovskii (ed.), Landslides and Mudflows, Vol. 2. UNEP/UNESCO, Moscow, USSR, pp. 10–19.Google Scholar
  225. 225.
    Read, S.A.L. (1979) Lake Waikaremoana outlet; engineering geological studies of factors related to leakage through the natural dam. Engineering Geology Report EG-336, New Zealand Geological Survey, Lower Hutt. 33 p.Google Scholar
  226. 226.
    Read, S.A.L., Beetham, R.D. and Riley, P.B. (1992) Lake Waikaremoana barrier – a large landslide dam in New Zealand, Proc. 6th Intern. Symposium on Landslides, Christchurch, New Zealand, Vol. 2, pp. 1481-1487, Balkema, Rotterdam.Google Scholar
  227. 227.
    Reneau, S.L. and Dethier, D.P. (1996) Late-Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico, GSA Bulletin 108, 1492–1507.CrossRefGoogle Scholar
  228. 228.
    Riley, P.B. and Read, S.A.L. (1992) Lake Waikaremoana present day stability of landslide barrier. Proc. 6th Intern. Symposium on Landslides, Christchurch, New Zealand, Vol. 2, pp. 1249–1256, Balkema, Rotterdam.Google Scholar
  229. 229.
    Risley, J.C., Walder, J.S. and Denlinger, R.P. (2006) Usoi dam wave overtopping and flood routing in the Bartang and Panj rivers, Tajikistan, Natural Hazards 38, 375–390.CrossRefGoogle Scholar
  230. 230.
    Ryder, J.M. and Church, M. (1986) The Lillooet terraces of Fraser River: A palaeoenvironmental enquiry, Canadian Journal of Earth Sciences 23, 869–884.CrossRefGoogle Scholar
  231. 231.
    Ryder, J.M., Bovis, M.J. and Church, M. (1990) Rock avalanches at Texas Creek, British Columbia, Canadian Journal of Earth Sciences 27, 1316–1329.CrossRefGoogle Scholar
  232. 232.
    Sager, J.W. and Chambers, D.R. (1986) Design and construction of the Spirit Lake outlet tunnel Mt St Helens Washington, in R.L. Schuster (ed.), Landslide Dams: Processes Risk and Mitigation. American Society of Civil Engineers Geotechnical Special Publication 3, New York, NY, pp. 42–58.Google Scholar
  233. 233.
    Sartori, M., Baillifard, F., Jaboyedoff, M. and Rouiller, J.-D. (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland), Natural Hazards and Earth System Sciences 3, 423–433.CrossRefGoogle Scholar
  234. 234.
    Schneider, J.-L., Pollet, N., Chapron, E., Wessels, M. and Wassmer, P. (2004) Signature of Rhine Valley sturzstrom dam failures in Holocene sediments of Lake Constance, Germany, Sedimentary Geology 169, 75–91.CrossRefGoogle Scholar
  235. 235.
    Schuster, R.L. (2000) A worldwide perspective on landslide dams, in D. Alford and R.L. Schuster (eds.), Usoi Landslide Dam and Lake Sarez, 1, ISDR Prevention Series. United Nations, Tajikistan, pp. 19–22.Google Scholar
  236. 236.
    Schuster, R.L. (2002) Usoi landslide dam, southeastern Tajikistan. Proc. Int. Symp. on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage, Kyoto, Japan, pp. 489–505.Google Scholar
  237. 237.
    Schuster, R.L. (2006) Interaction of dams and landslides-case studies and mitigation. United States Geological Survey Professional Paper 1723, 107 p.Google Scholar
  238. 238.
    Schuster, R.L. and Alford, D. (2004) Usoi landslide dam and Lake Sarez, Pamir Mountains, Tajikistan, Environmental and Engineering Geoscience Quarterly 10, 151–168.CrossRefGoogle Scholar
  239. 239.
    Schuster, R.L. and Costa, J.E. (1986) A perspective on landslide dams, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk and Mitigation. American Society of Civil Engineers, New York, NY, Geotechnical Special Publication No. 3, pp. 1–20.Google Scholar
  240. 240.
    Schuster, R.L. and Pringle, P.T. (2002) Engineering history and impacts of the Bonneville landslide, In J., Rybar, J., Stemberk, and P., Wagner (eds.), Landslides: Proceedings, 1st European Conference on Landslides. A. A. Balkema, Lisse. Prague, pp. 59–78.Google Scholar
  241. 241.
    Schuster, R.L., Logan, R.L. and Pringle, P.T. (1992) Prehistoric rock avalanches in the Olympic Mountains, Washington, Science 258, 1620–1621.CrossRefGoogle Scholar
  242. 242.
    Sekiya, S. and Kikuchi, Y. (1889) The eruption of Bandai-san: Tokyo Imperial University, College, Science Journal 3, 91–172.Google Scholar
  243. 243.
    Sevilla, J.H. (1994) The Josefina landslide and its implications in the electrical service for the Republic of Ecuador. Proc. 7th IAEG Cong., Lisbon, Vol.3, Balkema, Rotterdam, pp. 1801–1810.Google Scholar
  244. 244.
    Shang, Y., Yang, Z., Li, L., Liu, D., Liao, Q. and Wang, Y. (2003) A super-large landslide in Tibet in 2000: Background, occurrence, disaster, and origin, Geomorphology 54, 225–243.CrossRefGoogle Scholar
  245. 245.
    Shimazu, H. and Oguchi, T. (1996) River processes after rapid valley-filling due to large landslides, GeoJournal 38, 339–344.CrossRefGoogle Scholar
  246. 246.
    Shroder, J.F. (1998) Slope failure and denudation in the western Himalaya, Geomorphology 26, 81–105.CrossRefGoogle Scholar
  247. 247.
    Shroder, J.F., Cornwell, K. and Khan, M.S. (1991) Catastrophic break-out floods in the western Himalaya, Pakistan. Geological Society of America Annual Meeting, Program with Abstracts, Vol. 23, p. A87.Google Scholar
  248. 248.
    Shroder, J.F. and Weihs, B.J. (2010) Geomorphology of the Lake Shewa landslide dam, Badakhshan, Afghanistan, using remote sensing data, Geografiska Annaler 92A, 469–483.CrossRefGoogle Scholar
  249. 249.
    Singh, V.P. (1996) Dam Breach Modeling Technology. Kluwer, Dordrecht.Google Scholar
  250. 250.
    Sinyakov, V.K. (1971) Construction of a rockfill dam for the Baipaz hydraulic system by mass blasting, Hydrotechnical Construction 5, 411–414.CrossRefGoogle Scholar
  251. 251.
    Skorobogatov, A.V. (1978) Character of the texture of the material placed in the Medeo Rock Fill Dam, Hydrotechnical Construction 12, 354–355.CrossRefGoogle Scholar
  252. 252.
    Skorve, J. (1997) The environment of the nuclear test sites on Novaya Zemlya, The Science of the Total Environment 202, 167–172.CrossRefGoogle Scholar
  253. 253.
    Snow, D.T. (1964) Landslide of Cerro Condor-Sencca, Department of Ayacucho, Peru, in G.A. Kiersch (ed.), Geological Society of America Reviews in Engineering Geology, Vol. 5, Geological Society of America, Boulder, Co., pp. 1–6Google Scholar
  254. 254.
    Sokolov, Y.F. and Shapovalov, G.I. (1968) Building a rockfill dam by directional blasting, Hydrotechnical Construction 2, 385–389.CrossRefGoogle Scholar
  255. 255.
    Stein, A. (1916) A third journey of exploration in Central Asia, 1913–1916 (continued), The Geographical Journal 48, 193–225.CrossRefGoogle Scholar
  256. 256.
    Strachey, R. (1894) The landslip at Gohna, in British Garwhal, The Geographical Journal 4, 162–170.CrossRefGoogle Scholar
  257. 257.
    Strom, A.L. (2006) Morphology and internal structure of rockslides and rock avalanches; grounds and constraints for their modelling, in S.G. Evans, G. Scarascia-Mugnozza, A.L. Strom and R.L. Hermanns (eds.), Landslides from Massive Rock Slope Failure NATO Science Series IV, Earth and Environmental Sciences, Vol. 49. Springer, Dordrecht, pp. 305–326.CrossRefGoogle Scholar
  258. 258.
    Strom, A. (2010) Landslide dams in Central Asia Region, Journal of the Japan Landslide Society, 47, 309–324.Google Scholar
  259. 259.
    Stucky Consulting Engineers (2001) Lake Sarez Mitigation Project; Design Report, 149 p.Google Scholar
  260. 260.
    Suter, M. (2004) A neotectonic-geomorphologic investigation of the prehistoric rock avalanche damming Laguna de Metztitlan (Hidalgo State, east-central Mexico), Revista Mexicana de Ciencias Geológicas 21, 397–411.Google Scholar
  261. 261.
    Swanson, F.J., Oyagi, N. and Tominaga, M. (1986) Landslide dams in Japan, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk, and Mitigation, Geotechnical Special Publication No. 3. American Society of Civil Engineers, New York, NY, pp. 131–145.Google Scholar
  262. 262.
    Tabata, S., Mizuyama, T., Inoue, K. and Sugiyama, M. (2000) Sediment movement caused from the Tombi landslide, by the 1858 Hietu Earthquake (M 7.0 – 7.1) in Central Japan, Journal of Japan Society of Erosion Control Engineering 53, 59–70.Google Scholar
  263. 263.
    Taype Ramos, V. (1976) Mecanica del deslizamiento de Ccochay en el Rio Mantaro, Bol. de la Soc. Geol. del Peru 52, 73–90.Google Scholar
  264. 264.
    Terado, T. (1970) Landslide of Mt. Takaiso, Tokushima Prefecture, and prevention of reservoir disaster (in Japanese with English abstract), Geographical Sciences 14, 22–28.Google Scholar
  265. 265.
    Terzaghi, K. (1960) Storage dam founded on landslide debris, Journal of the Boston Society of Civil Engineers 47, 64–94.Google Scholar
  266. 266.
    Tewari, P. (2004) A study of soil erosion in Pasighat town (Arunachal Pradesh) India, Natural Hazards 32, 257–275.CrossRefGoogle Scholar
  267. 267.
    Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. and Strecker, M.R. (2000) Climate change and mass movements in the NW Argentine Andes, Earth and Planetary Science Letters 179, 243–256.CrossRefGoogle Scholar
  268. 268.
    U.S. Army Corps of Engineers (1995) Hydrologic engineering requirements for flood damage reduction studies, Engineer Manual EM-1110-2-1419.Google Scholar
  269. 269.
    U.S. Army Corps of Engineers (Omaha District) (1960) Madison River, Montana – Report on Flood Emergency Madison River Slide, Vol. 2. Omaha, NE.Google Scholar
  270. 270.
    Voight, B. (1978) The Lower Gros Ventre slide, Wyoming, USA, in B. Voight (ed.), Rockslides and avalanches, 1, Natural Phenomena. Elsevier, Amsterdam, NY, pp. 113–166.Google Scholar
  271. 271.
    Voight, B., Janda, R.J., Glicken, H. and Douglass, P.M. (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May, 1980, Géotechnique 33, 243–273.CrossRefGoogle Scholar
  272. 272.
    Wahl, T.L. (1998) Prediction of embankment dam breach parameters; a literature review and needs assessment, U.S. Bureau of Reclamation Dam Safety Office Dam Safety Research Report DSO-98-004, 60 p.Google Scholar
  273. 273.
    Wahl, T.L. (2004) Uncertainty of predictions of embankment dam breach parameters, Journal of Hydraulic Engineering 130, 389–397.CrossRefGoogle Scholar
  274. 274.
    Walder, J.S. and O’Connor, J.E. (1997) Methods for predicting peak discharge of floods caused by the failure of natural and constructed earthen dams, Water Resources Research 33, 2337–2348.CrossRefGoogle Scholar
  275. 275.
    Wang, Z., Cui, P., Yu, G-A. and Zhang, K. (2010) Study of landslide dams and development of knick points, Environmental Earth Science, doi 10.1007/s12665-010-0863-1.Google Scholar
  276. 276.
    Wang, G.-Q., Liu, F., Fu, X.-D. and Li, T.-J. (2008) Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China, Science in China Series E; Technological Sciences 51, 82–94.CrossRefGoogle Scholar
  277. 277.
    Wassmer, P., Schneider, J.L., Pollet, N. and Schmitter-Voirin, C. (2004) Effects of the internal structure of a rock-avalanche dam on the drainage mechanisms of its impoundment, Flims sturzstrom and Ilanz paleo-lake, Swiss Alps, Geomorphology 61, 3–17.CrossRefGoogle Scholar
  278. 278.
    Watson, R.A. and Wright, H.E., Jr. (1969) The Saidmarreh landslide, Iran, Geological Society of America, Special Paper 123, 115–139.Google Scholar
  279. 279.
    Wayne, W.J. (1999) The Alemania rockfall dam: A record of a Mid-Holocene earthquake and catastrophic flood in northwestern Argentina, Geomorphology 27, 295–306.CrossRefGoogle Scholar
  280. 280.
    Waythomas, C.F. (2001) Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska, Geomorphology 39, 111–129.CrossRefGoogle Scholar
  281. 281.
    Webby, M.G. and Jennings, D.N. (1994) Analysis of dam break flood caused by failure of Tunawaea landslide dam, Proceedings of International Conference on Hydraulics in Civil Engineering 1994, University of Brisbane, Australia, 163–168.Google Scholar
  282. 282.
    Weidinger, J.T. (1998) Case history and hazard analysis of two lake-damming landslides in the Himalayas, Journal of Asian Earth Sciences 16, 323–331.CrossRefGoogle Scholar
  283. 283.
    Weidinger, J.T., Wang, J. and Ma, N. (2002) The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P.R. of China – the benefits of a lake-damming prehistoric natural disaster, Quaternary international 93–94, 207–214.CrossRefGoogle Scholar
  284. 284.
    Weil, B. (2006) The rivers come: Colonial flood control and knowledge systems in the Indus Basin, 1840s–1930s, Environment and History 12, 3–29.CrossRefGoogle Scholar
  285. 285.
    Xu, Q., Fan, X.-M., Huang, R.-Q. and van Westen, C. (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China, Bulletin of Engineering Geology and the Environment 68, 373–386.CrossRefGoogle Scholar
  286. 286.
    Yang, X., Yang, Z., Cao, S., Gao, X. and Li, S. (2010) Key techniques for the emergency disposal of quake lakes, Natural Hazards 52, 43–56.CrossRefGoogle Scholar
  287. 287.
    Yi, C., Zhu, L., Seong, Y.B., Owen, L.A. and Finkel, R.C. (2006) A late glacial rock avalanche event, Tianchi Lake, Tien Shan, Xinjiang, Quaternary International 154–155, 26–31.CrossRefGoogle Scholar
  288. 288.
    Youd, T.L., Wilson, R.C. and Schuster, R.L. (1981) Stability of blockage in North Fork Toutle River, in P.W. Lipman and D.R. Mullineaux (eds.), The 1980 eruptions of Mt St Helens, Washington. United States Geological Survey Professional Paper 1250, pp. 821–829.Google Scholar
  289. 289.
    Zevallos, O., Augusta Fernandez, M., Plaza Nieto, G., and Klinkicht Sojos, S. (Eds.) (1996) Sin Plazo Para la Esperanza; Reporte Sobre el Desastre de la Josefina-Ecuador, 1993. Escuela Politecnica Nacional, Quito, Ecuador, 348 p.Google Scholar
  290. 290.
    Zhang, F., Zhang, Z., Han, Z., Sun, J. and Xiao, G. (2009) Risk assessment and treatment countermeasures for the barrier lakes of Wenchuan Earthquake on May 12th, 2008, Acta Geologica Sinica 83, 826–833.CrossRefGoogle Scholar
  291. 291.
    Zhou, C.H., Yue, Z.Q., Lee, C.F., Zhu, B.Q. and Wang, Z.H. (2001) Satellite image analysis of a huge landslide at Yi Gong, Tibet, China, Quarterly Journal of Engineering Geology and Hydrogeology 34, 325–332.CrossRefGoogle Scholar
  292. 292.
    Zhu, P.Y. and Li, T. (2001) Flash flooding caused by landslide dam failure. ICIMOD Newsletter No.38.Google Scholar
  293. 293.
    Zhu, P.Y., Wang, C.H. and Wang, Y.C. (2003) Large-scale landslide-debris avalanche in Tibet, China. (2) Formation of an exceptionally serious outburst flood from a landslide dam in Tibet, Landslide News 14–15, 23–25.Google Scholar
  294. 294.
    Zinevich, Y.N. (1981) Mudflow detention dam at Mynzhilki, Hydrotechnical Construction 15, 762–767.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stephen G. Evans
    • 1
  • Keith B. Delaney
    • 1
  • Reginald L. Hermanns
    • 2
  • Alexander Strom
    • 3
  • Gabriele Scarascia-Mugnozza
    • 4
  1. 1.Landslide Research Programme, Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  2. 2.International Centre for Geohazards, Geological Survey of NorwayTrondheimNorway
  3. 3.Institute of Geospheres Dynamics, Russian Academy of SciencesMoscowRussia
  4. 4.Department of Earth SciencesUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations