Specification Languages for Stutter-Invariant Regular Properties

  • Christian Dax
  • Felix Klaedtke
  • Stefan Leue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5799)


We present specification languages that naturally capture exactly the regular and ω-regular properties that are stutter invariant. Our specification languages are variants of the classical regular expressions and of the core of PSL, a temporal logic, which is widely used in industry and which extends the classical linear-time temporal logic LTL by semi-extended regular expressions.


Model Check Temporal Logic Regular Language Closure Property Step Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE standard for property specification language (PSL). IEEE Std 1850TM (October 2005)Google Scholar
  2. 2.
    Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction in symbolic state-space exploration. Form. Method. Syst. Des. 18(2), 97–116 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Beer, I., Ben-David, S., Eisner, C., Geist, D., Gluhovsky, L., Heyman, T., Landver, A., Paanah, P., Rodeh, Y., Ronin, G., Wolfsthal, Y.: RuleBase: Model checking at IBM. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS 1997. LNCS, vol. 1245, pp. 480–483. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata construction algorithms optimized for PSL. Technical report, The Prosyd Project (2005),
  5. 5.
    Bustan, D., Havlicek, J.: Some complexity results for SystemVerilog assertions. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 205–218. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Roveri, M., Tonetta, S.: Symbolic compilation of PSL. IEEE Trans. on CAD of Integrated Circuits and Systems 27(10), 1737–1750 (2008)CrossRefGoogle Scholar
  7. 7.
    Dax, C., Klaedtke, F., Lange, M.: On regular temporal logics with past. In: Proceedings of the 36th International Colloquium on Automata, Languages, and Programming, ICALP (to appear, 2009)Google Scholar
  8. 8.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Proceedings of the 21st International Conference on Software Engineering (ICSE), pp. 411–420 (1999),
  9. 9.
    Etessami, K.: Stutter-invariant languages, ω-automata, and temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant LTL. Inform. Process. Lett. 75(6), 261–263 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput. 110(2), 305–326 (1994)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Holzmann, G., Kupferman, O.: Not checking for closure under stuttering. In: Proceedings of the 2nd International Workshop on the SPIN Verification System. Series in Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 163–169 (1996)Google Scholar
  13. 13.
    Lamport, L.: What good is temporal logic? In: Proceedings of the 9th IFIP World Computer Congress. Information Processing, vol. 83, pp. 657–668 (1983)Google Scholar
  14. 14.
    Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 90–104. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Peled, D.: Combining partial order reductions with on-the-fly model-checking. Form. Method. Syst. Des. 8(1), 39–64 (1996)CrossRefGoogle Scholar
  16. 16.
    Peled, D.: Ten years of partial order reduction. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next operator. Inform. Process. Lett. 63(5), 243–246 (1997)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure properties of temporal logic specifications and ω-regular languages. Theoret. Comput. Sci. 195(2), 183–203 (1998)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Rabinovich, A.M.: Expressive completeness of temporal logic of action. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 229–238. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Valmari, A.: A stubborn attack on state explosion. Form. Method. Syst. Des. 1(4), 297–322 (1992)CrossRefMATHGoogle Scholar
  21. 21.
    Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, S. (eds.) Logic and Its Applications. LNCS, vol. 5378, pp. 89–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Dax
    • 1
  • Felix Klaedtke
    • 1
  • Stefan Leue
    • 2
  1. 1.ETH ZurichSwitzerland
  2. 2.University of KonstanzGermany

Personalised recommendations