Advertisement

On Minimal Odd Rankings for Büchi Complementation

  • Hrishikesh Karmarkar
  • Supratik Chakraborty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5799)

Abstract

We study minimal odd rankings (as defined by Kupferman and Vardi[KV01]) for run-DAGs of words in the complement of a nondeterministic Büchi automaton. We present an optimized version of the ranking based complementation construction of Friedgut, Kupferman and Vardi[FKV06] and Schewe’s[Sch09] variant of it, such that every accepting run of the complement automaton assigns a minimal odd ranking to the corresponding run-DAG. This allows us to determine minimally inessential ranks and redundant slices in ranking-based complementation constructions. We exploit this to reduce the size of the complement Büchi automaton by eliminating all redundant slices. We demonstrate the practical importance of this result through a set of experiments using the NuSMV model checker.

Keywords

Level Ranking Complementation Construction Redundant Slice Assign Rank Subset Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Büc62]
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford Univ. Press, Stanford (1962)Google Scholar
  2. [DR09]
    Doyen, L., Raskin, J.-F.: Antichains for the automata based approach to model checking. Logical Methods in Computer Science 5, 1–20 (2009)CrossRefMathSciNetGoogle Scholar
  3. [FKV06]
    Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. Int. J. Found. Comput. Sci. 17(4), 851–868 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. [FV09]
    Fogarty, S., Vardi., M.Y.: Büchi complementation and size-change termination. In: Proc. TACAS, pp. 16–30 (2009)Google Scholar
  5. [GKSV03]
    Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nondeterministic büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)Google Scholar
  6. [KC09]
    Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi complementation (May 2009), http://www.cfdvs.iitb.ac.in/reports/index.php
  7. [Kla91]
    Klarlund, N.: Progress measures for complementation of ω-automata with applications to temporal logic. In: Proc. 32nd IEEE FOCS, San Juan, pp. 358–367 (1991)Google Scholar
  8. [KV01]
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)CrossRefMathSciNetGoogle Scholar
  9. [KW08]
    Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. [Löd99]
    Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [Mic88]
    Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET, Paris (1988)Google Scholar
  12. [Pit07]
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic Parity automata. Logical Methods in Computer Science 3(3:5), 1–217 (2007)MathSciNetGoogle Scholar
  13. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE FOCS, pp. 319–327 (1988)Google Scholar
  14. [Sch09]
    Schewe, S.: Büchi complementation made tight. In: Proc. STACS, pp. 661–672 (2009)Google Scholar
  15. [SVW87]
    Prasad Sistla, A., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  16. [TCT+08]
    Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: Goal extended: Towards a research tool for omega automata and temporal logic. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. [Var07]
    Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. [Yan08]
    Yan, Q.: Lower bounds for complementation of omega-automata via the full automata technique. Logical Methods in Computer Science 4(1), 1–20 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hrishikesh Karmarkar
    • 1
  • Supratik Chakraborty
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology Bombay 

Personalised recommendations