Subspace Discovery for Promotion: A Cell Clustering Approach

  • Tianyi Wu
  • Jiawei Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5808)

Abstract

The promotion analysis problem has been proposed in , where ranking-based promotion query processing techniques are studied to effectively and efficiently promote a given object, such as a product, by exploring ranked answers. To be more specific, in a multidimensional data set, our goal is to discover interesting subspaces in which the object is ranked high. In this paper, we extend the previously proposed promotion cube techniques and develop a cell clustering approach that is able to further achieve better tradeoff between offline materialization and online query processing. We formally formulate our problem and present a solution to it. Our empirical evaluation on both synthetic and real data sets show that the proposed technique can greatly speedup query processing with respect to baseline implementations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, E.M., Barequet, G., Mitchell, J.S.B.: Algorithms for two-box covering. In: Symposium on Computational Geometry, pp. 459–467 (2006)Google Scholar
  2. 2.
    Chang, K.C.-C., Hwang, S.-w.: Minimal probing: supporting expensive predicates for top-k queries. In: SIGMOD Conference, pp. 346–357 (2002)Google Scholar
  3. 3.
    Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. In: STOC, pp. 1–10 (2001)Google Scholar
  4. 4.
    Doddi, S.R., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation algorithms for clustering to minimize the sum of diameters. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 237–250. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    DuMouchel, W., Volinsky, C., Johnson, T., Cortes, C., Pregibon, D.: Squashing flat files flatter. In: KDD, pp. 6–15 (1999)Google Scholar
  6. 6.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Han, J., Kamber, M.: Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)MATHGoogle Scholar
  8. 8.
    Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston (1997)MATHGoogle Scholar
  9. 9.
    Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and vlsi. J. ACM 32(1), 130–136 (1985)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over relational databases. In: VLDB, pp. 850–861 (2003)Google Scholar
  11. 11.
    Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: Dada: a data cube for dominant relationship analysis. In: SIGMOD, pp. 659–670 (2006)Google Scholar
  12. 12.
    Marian, A., Bruno, N., Gravano, L.: Evaluating top- queries over web-accessible databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)CrossRefGoogle Scholar
  13. 13.
    Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT, pp. 565–576 (2009)Google Scholar
  14. 14.
    Wu, T., Li, X., Xin, D., Han, J., Lee, J., Redder, R.: Datascope: Viewing database contents in google maps’ way. In: VLDB, pp. 1314–1317 (2007)Google Scholar
  15. 15.
    Wu, T., Xin, D., Han, J.: Arcube: supporting ranking aggregate queries in partially materialized data cubes. In: SIGMOD Conference, pp. 79–92 (2008)Google Scholar
  16. 16.
    Wu, T., Xin, D., Mei, Q., Han, J.: Promotion analysis in multi-dimensional space. In: PVLDB (2009)Google Scholar
  17. 17.
    Xin, D., Han, J., Cheng, H., Li, X.: Answering top-k queries with multi-dimensional selections: The ranking cube approach. In: VLDB, pp. 463–475 (2006)Google Scholar
  18. 18.
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: A new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1(2), 141–182 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tianyi Wu
    • 1
  • Jiawei Han
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations