A Comparison of Community Detection Algorithms on Artificial Networks

  • Günce Keziban Orman
  • Vincent Labatut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5808)

Abstract

Community detection has become a very important part in complex networks analysis. Authors traditionally test their algorithms on a few real or artificial networks. Testing on real networks is necessary, but also limited: the considered real networks are usually small, the actual underlying communities are generally not defined objectively, and it is not possible to control their properties. Generating artificial networks makes it possible to overcome these limitations. Until recently though, most works used variations of the classic Erdős-Rényi random model and consequently suffered from the same flaws, generating networks not realistic enough. In this work, we use Lancichinetti et al. model, which is able to generate networks with controlled power-law degree and community distributions, to test some community detection algorithms. We analyze the properties of the generated networks and use the normalized mutual information measure to assess the quality of the results and compare the considered algorithms.

Keywords

Complex networks Community detection Algorithms comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  3. 3.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)CrossRefGoogle Scholar
  4. 4.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99, 7821–7826 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  6. 6.
    Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Complex Networks with a Potts Model. Physical Review Letters 93, 218701 (2004)CrossRefGoogle Scholar
  7. 7.
    Falkowski, T., Barth, A., Spiliopoulou, M.: DENGRAPH: A Density-based Community Detection Algorithm. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 112–115 (2007)Google Scholar
  8. 8.
    Liu, Y., Wang, Q., Wang, Q., Yao, Q., Liu, Y.: Email Community Detection Using Artificial Ant Colony Clustering. In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM 2007. LNCS, vol. 4537, pp. 287–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network analysis. Journal of the American Statistical Association 97, 1090–1098 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)CrossRefGoogle Scholar
  11. 11.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)CrossRefGoogle Scholar
  12. 12.
    Erdos, P., Renyi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
  13. 13.
    Danon, L., Diaz-Guilera, A., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics-Theory and Experiment 11010 (2006)Google Scholar
  14. 14.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E Stat. Nonlin Soft. Matter Phys. 78, 46110 (2008)CrossRefGoogle Scholar
  15. 15.
    Kuncheva, L.I., Hadjitodorov, S.T.: Using diversity in cluster ensembles. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1214–1219 (2004)Google Scholar
  16. 16.
    Fred, A.L.N., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 128–136. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  17. 17.
    Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech P09008 (2005)Google Scholar
  18. 18.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Physical Review E 65, 026139 (2002)CrossRefGoogle Scholar
  19. 19.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Physics Reports 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  21. 21.
    Watts, D., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 409–410 (1998)CrossRefGoogle Scholar
  22. 22.
    Barabasi, A., Albert, R.: Statistical mechanics of complex networks. Reviews of Modern physics 74, 47–96 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103 (2003)CrossRefGoogle Scholar
  24. 24.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)CrossRefGoogle Scholar
  25. 25.
    Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational Psychology Measurement 20, 37–46 (1960)CrossRefGoogle Scholar
  26. 26.
    Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Science of the USA 104, 36–41 (2007)CrossRefGoogle Scholar
  27. 27.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Physical Review E 70, 025101 (2004)CrossRefGoogle Scholar
  28. 28.
    Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical Review Letters 94 (2005)Google Scholar
  29. 29.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America 101, 2658–2663 (2004)CrossRefGoogle Scholar
  33. 33.
    Donetti, L., Munoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment P10012 (2004)Google Scholar
  34. 34.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Serrano, M., Boguñá, M.: Weighted Configuration Model. In: AIP Conference Proceedings, vol. 776, p. 101 (2005)Google Scholar
  36. 36.
    Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. PNAS 99, 15879–15882 (2002)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Günce Keziban Orman
    • 1
    • 2
  • Vincent Labatut
    • 1
  1. 1.Computer Science DepartmentGalatasaray UniversityOrtaköy/İstanbulTurkey
  2. 2.TÜBİTAKGebze/KocaeliTurkey

Personalised recommendations