Inference and Learning in Planning (Extended Abstract)

  • Hector Geffner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5808)

Abstract

Planning is concerned with the development of solvers for a wide range of models where actions must be selected for achieving goals. In these models, actions may be deterministic or not, and full or partial sensing may be available. In the last few years, significant progress has been made, resulting in algorithms that can produce plans effectively in a variety of settings. These developments have to do with the formulation and use of general inference techniques and transformations. In this invited talk, I’ll review the inference techniques used for solving individual planning instances from scratch, and discuss the use of learning methods and transformations for obtaining more general solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newell, A., Simon, H.: GPS: a program that simulates human thought. In: Feigenbaum, E., Feldman, J. (eds.) Computers and Thought, pp. 279–293. McGraw-Hill, New York (1963)Google Scholar
  2. 2.
    Bylander, T.: The computational complexity of STRIPS planning. Artificial Intelligence 69, 165–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceedings of IJCAI 1995, pp. 1636–1642. Morgan Kaufmann, San Francisco (1995)Google Scholar
  4. 4.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proc. AAAI, pp. 1194–1201 (1996)Google Scholar
  5. 5.
    McDermott, D.: Using regression-match graphs to control search in planning. Artificial Intelligence 109(1-2), 111–159 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism for planning. In: Proceedings of AAAI 1997, pp. 714–719. MIT Press, Cambridge (1997)Google Scholar
  7. 7.
    Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)MATHGoogle Scholar
  8. 8.
    Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar
  9. 9.
    Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 1, 27–120 (1971)CrossRefMATHGoogle Scholar
  10. 10.
    Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: Proc. AIPS 1996 (1996)Google Scholar
  11. 11.
    Smith, D., Weld, D.: Conformant graphplan. In: Proceedings AAAI 1998, pp. 889–896. AAAI Press, Menlo Park (1998)Google Scholar
  12. 12.
    Cassandra, A., Kaelbling, L., Littman, M.L.: Acting optimally in partially observable stochastic domains. In: Proc. AAAI, pp. 1023–1028 (1994)Google Scholar
  13. 13.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)MATHGoogle Scholar
  14. 14.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)MATHGoogle Scholar
  15. 15.
    International Planning Competitions (2009), http://icaps-conference.org/index.php/main/competitions
  16. 16.
    McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL – The Planning Domain Definition Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, New Haven, CT (1998)Google Scholar
  17. 17.
    Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 191–246 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In: Proc. AAAI, pp. 975–982 (2008)Google Scholar
  19. 19.
    Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1–2), 5–33 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pearl, J.: Heuristics. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  21. 21.
    Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proc. ECAI 2008 (2008)Google Scholar
  22. 22.
    Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search in belief space. In: Proc. of AIPS 2000, pp. 52–61. AAAI Press, Menlo Park (2000)Google Scholar
  23. 23.
    Haslum, P., Jonsson, P.: Some results on the complexity of planning with incomplete information. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 308–318. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with implicit belief states. In: Proc. ICAPS, pp. 71–80 (2005)Google Scholar
  25. 25.
    Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic domains under partial observability via symbolic model checking. In: Proc. IJCAI 2001 (2001)Google Scholar
  26. 26.
    Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. Journal of AI Research 26, 35–99 (2006)MATHGoogle Scholar
  27. 27.
    Palacios, H., Geffner, H.: From conformant into classical planning: Efficient translations that may be complete too. In: Proc. 17th Int. Conf. on Planning and Scheduling, ICAPS 2007 (2007)Google Scholar
  28. 28.
    Bonet, B., Givan, B.: Results of the conformant track of the 5th int. planning competition (2006), http://www.ldc.usb.ve/~bonet/ipc5/docs/results-conformant.pdf
  29. 29.
    Buckland, M.: Programming Game AI by Example. Wordware Publishing, Inc. (2004)Google Scholar
  30. 30.
    Murphy, R.R.: An Introduction to AI Robotics. MIT Press, Cambridge (2000)Google Scholar
  31. 31.
    Mataric, M.J.: The Robotics Primer. MIT Press, Cambridge (2007)Google Scholar
  32. 32.
    Littman, M.L.: Memoryless policies: Theoretical limitations and practical results. In: Cliff, D. (ed.) From Animals to Animats 3. MIT Press, Cambridge (1994)Google Scholar
  33. 33.
    Meuleau, N., Peshkin, L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers for partially observable environments. In: Proc. UAI, pp. 427–436 (1999)Google Scholar
  34. 34.
    Poupart, P., Boutilier, C.: Bounded finite state controllers. In: Proc. NIPS, pp. 823–830 (2003)Google Scholar
  35. 35.
    Amato, C., Bernstein, D., Zilberstein, S.: Optimizing memory-bounded controllers for decentralized pomdps. In: Proc. UAI (2007)Google Scholar
  36. 36.
    Bonet, B., Palacios, H., Geffner, H.: Automatic derivation of memoryless policies and finite-state controllers using classical planners. In: Proc. ICAPS 2009 (2009)Google Scholar
  37. 37.
    Chapman, D.: Penguins can make cake. AI Magazine 10(4), 45–50 (1989)Google Scholar
  38. 38.
    Ballard, D., Hayhoe, M., Pook, P., Rao, R.: Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences 20 (1997)Google Scholar
  39. 39.
    Khardon, R.: Learning action strategies for planning domains. Artificial Intelligence 113, 125–148 (1999)CrossRefMATHGoogle Scholar
  40. 40.
    Martin, M., Geffner, H.: Learning generalized policies from planning examples using concept languages. Appl. Intelligence 20(1), 9–19 (2004)CrossRefMATHGoogle Scholar
  41. 41.
    Yoon, S., Fern, A., Givan, R.: Inductive policy selection for first-order MDPs. In: Proc. UAI 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hector Geffner
    • 1
  1. 1.ICREA & Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations