Advertisement

DCJ Median Problems on Linear Multichromosomal Genomes: Graph Representation and Fast Exact Solutions

  • Andrew Wei Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5817)

Abstract

Given a set of genomes \(\mathcal{G}\) and a distance measure d, the genome rearrangement median problem asks for another genome q that minimizes \(\sum_{g\in \mathcal{G}} d(q,g)\). This problem lies at the heart of phylogenetic reconstruction from rearrangement data, where solutions to the median problems are iteratively used to update genome assignments to internal nodes for a given tree. The median problem for reversal distance and DCJ distance is known to be NP-hard, regardless of whether genomes contain circular chromosomes or linear chromosomes and of whether extra circular chromosomes is allowed in the median genomes. In this paper, we study the relaxed DCJ median problem on linear multichromosomal genomes where the median genomes may contain extra circular chromosomes; extend our prior results on circular genomes—which allowed us to compute exact medians for genomes of up to 1,000 genes within a few minutes. First we model the DCJ median problem on linear multichromosomal genomes by a capped multiple breakpoint graph, a model that avoids another computationally difficult problem—a multi-way capping problem for linear genomes, then establish its corresponding decomposition theory, and finally show its results on genomes with up to several thousand genes.

Keywords

Median Problem Median Graph Linear Chromosome Circular Genome Breakpoint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinformatics 4, 69–74 (2008)Google Scholar
  2. 2.
    Bader, D., Moret, B., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36 (2002)PubMedPubMedCentralGoogle Scholar
  4. 4.
    Caprara, A.: The reversal median problem. INFORMS J. Comput. 15, 93–113 (2003)CrossRefGoogle Scholar
  5. 5.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. In: Proc. 27th ACM Symp. on Theory of Computing STOC 1995, pp. 178–189. ACM, New York (1995)Google Scholar
  6. 6.
    Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proc. 43rd IEEE Symp. on Foudations of Computer Science FOCS 1995, pp. 581–592. IEEE Computer Soc., Los Alamitos (1995)Google Scholar
  7. 7.
    Lenne, R., Solnon, C., Stützle, T., Tannier, E., Birattari, M.: Reactive stochastic local search algorithms for the genomic median problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Siepel, A., Moret, B.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Swenson, K., Rajan, V., Lin, Y., Moret, B.: Sorting signed permutations by inversions in o(nlogn) time. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 386–399. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Swenson, K., To, Y., Tang, J., Moret, B.: Maximum independent sets of commuting and noninterfering inversions. In: Proc. 7th Asia-Pacific Bioinformatics Conf. APBC 2009, vol. 10 (suppl. 1), p. S6 (2009)Google Scholar
  11. 11.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002)CrossRefGoogle Scholar
  13. 13.
    Xu, A.: The distance between randomly constructed genomes. In: Proc. 5th Asia-Pacific Bioinformatics Conf. APBC 2007. Advances in Bioinformatics and Computational Biology, vol. 5, pp. 227–236. Imperial College Press, London (2007)Google Scholar
  14. 14.
    Xu, A.: A fast and exact algorithm for the median of three problem—A graph decomposition approach. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 184–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 25–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang, M., Arndt, W., Tang, J.: An exact median solver for the DCJ distance. In: Proc. 14th Pacific Symposium on Biocomputing PSB 2009, pp. 138–149. World Scientific, Singapore (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrew Wei Xu
    • 1
  1. 1.School of Computer and Communication SciencesSwiss Federal Institute of Technology (EPFL), EPFL IC LCBB, Station 14LausanneSwitzerland

Personalised recommendations