Counting All DCJ Sorting Scenarios

  • Marília D. V. Braga
  • Jens Stoye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5817)


In genome rearrangements, the double cut and join (DCJ) operation, introduced by Yancopoulos et al., allows to represent most rearrangement events that could happen in multichromosomal genomes, such as inversions, translocations, fusions and fissions. No restriction on the genome structure considering linear and circular chromosomes is imposed. An advantage of this general model is that it leads to considerable algorithmic simplifications. Recently several works concerning the DCJ operation have been published, and in particular an algorithm was proposed to find an optimal DCJ sequence for sorting one genome into another one. Here we study the solution space of this problem and give an easy to compute formula that corresponds to the exact number of optimal DCJ sorting sequences to a particular subset of instances of the problem. In addition, this formula is also a lower bound to the number of sorting sequences to any instance of the problem.


Genome Rearrangement Adjacency Graph Circular Chromosome Linear Chromosome Parking Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19, 943–957 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bergeron, A., Chauve, C., Hartmann, T., St-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: Proceedings of JOBIM 2002, pp. 99–108 (2002)Google Scholar
  3. 3.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Braga, M.D.V., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution space of sorting by reversals with experiments and an application to evolution. IEEE/ACM Trans. Comput. Biol. Bioinf. 5(3), 348–356 (2008); Preliminary version in Proceedings of ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 293–304 (2007)Google Scholar
  5. 5.
    Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995)Google Scholar
  6. 6.
    Ouangraoua, A., Bergeron, A.: Parking functions, labeled trees and DCJ sorting scenarios. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS (LNBI), vol. 5817, pp. 24–35. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Sankoff, D.: Edit Distance for Genome Comparison Based on Non-Local Operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  8. 8.
    Siepel, A.: An algorithm to enumerate sorting reversals for signed permutations. J. Comput. Biol. 10, 575–597 (2003)CrossRefPubMedGoogle Scholar
  9. 9.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    Zeilberger, D.: Yet another proof of Cayley’s formula for the number of labelled trees,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marília D. V. Braga
    • 1
  • Jens Stoye
    • 1
  1. 1.Technische FakultätUniversität BielefeldGermany

Personalised recommendations