Computing the Summed Adjacency Disruption Number between Two Genomes with Duplicate Genes Using Pseudo-Boolean Optimization

  • João Delgado
  • Inês Lynce
  • Vasco Manquinho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5817)


The increasing number of fully sequenced genomes has led to the study of genome rearrangements. Several approaches have been proposed to solve this problem, all of them being either too complex to be solved efficiently or too simple to be applied to genomes of complex organisms. The latest challenge has been to overcome the problem of having genomes with duplicate genes. This led to the definition of matching models and similarity measures. The idea is to find a matching between genes in two genomes, in order to disambiguate the data of duplicate genes and calculate a similarity measure. The problem becomes that of finding a matching that best preserves the order of genes in two genomes, where gene order is evaluated by a chosen similarity measure. This paper presents a new pseudo-Boolean encoding for computing the exact summed adjacency disruption number for two genomes with duplicate genes. Experimental results on a γ-Proteobacteria data set illustrate the approach.


Gene Family Genome Rearrangement Maximum Match Maximum Model Exemplar Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. Journal of Computational Biology 15(8), 1093–1115 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: A general framework for computing rearrangement distances between genomes with duplicates. Journal of Computational Biology 14(4), 379–393 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    Bafna, V., Pevzner, P.A.: Sorting by reversals: Genome rearrangements in plant organneles and evolutionary history of x chromosome. Molecular Biology and Evolution 12(2), 239–246 (1995)Google Scholar
  4. 4.
    Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25(2), 272–289 (1996)CrossRefGoogle Scholar
  5. 5.
    Barth, P.: A Davis-Putnam enumeration algorithm for linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003, Max Plank Institute for CS (1995)Google Scholar
  6. 6.
    Blin, G., Chauve, C., Fertin, G.: Genes order and phylogenetic reconstruction: Application to γ-protobacteria. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 11–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplications: a computational complexity point of view. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4), 523–534 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    Caprara, A., Lancia, G., Ng, S.K.: A column-generation based branch-and-bound algorithm for sorting by reversals. In: Mathematical Support for Molecular Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 47, pp. 213–226 (1999)Google Scholar
  9. 9.
    Delgado, J.: Pseudo-boolean approaches to comparative genomics. Master’s thesis, Instituto Superior Técnico, Technical University of Lisbon, Portugal (June 2009)Google Scholar
  10. 10.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)Google Scholar
  11. 11.
    Kececioglu, J., Ravi, R.: Of mice and men: Evolutionary distances between genomes under translocations. In: 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613 (1995)Google Scholar
  12. 12.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangements. Algorithmica 13, 180–210 (1995)CrossRefGoogle Scholar
  13. 13.
    Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in prokaryotes: the case of the γ-proteobacteria. PLoS Biology 1(1), 101–109 (2003)CrossRefGoogle Scholar
  14. 14.
    Li, W.-H., Gu, Z., Wang, H., Nekrutenko, A.: Evolutionary analyses of the human genome. Nature 409, 847–849 (2001)CrossRefPubMedGoogle Scholar
  15. 15.
    Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)CrossRefPubMedGoogle Scholar
  16. 16.
    Sankoff, D.: Gene and genome duplication. Current Opinion in Genetics & Development 11(6), 681–684 (2001)CrossRefGoogle Scholar
  17. 17.
    Sankoff, D., Haque, L.: Power boost for cluster tests. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 121–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America 89(14), 6575–6579 (1992)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • João Delgado
    • 1
  • Inês Lynce
    • 1
  • Vasco Manquinho
    • 1
  1. 1.IST/INESC-ID, Technical University of LisbonPortugal

Personalised recommendations