Advertisement

Phenols

  • Manfred Weber
  • Markus Weber
Chapter

Abstract

Up to the end of the nineteenth century, phenol was recovered primarily from coal tar. With the commercialization of the phenolic resins, the demand for phenol grew significantly. Currently, the cumene-to-phenol process is the predominant synthetic route for the production of phenol. It is accompanied by acetone as a co-product. Cumene is oxidized with oxygen to form cumene hydroperoxide. The peroxide is subsequently decomposed to phenol and acetone, using a strong mineral acid as catalyst. The products are purified in a series of distillation columns. The cumene-to-phenol process is described in more detail in this chapter. An overview is given about synthetic routes via direct oxidation of benzene. None of these alternative routes has been commercialized. The chapter also gives an overview of global supply and use of phenol in 2008. Finally, the main natural sources and synthetic routes for cresols, xylenols, resorcinol, and bisphenol-A are described. These components are used as comonomers for special phenolic resins.

Keywords

Adipic Acid Distillation Unit Caustic Soda Pure Phenol Cleavage Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACP

Acetophenone

AMS

α-Methylstyrene

BP

Boiling point

BPA

Bisphenol-A

BWWT

Biological Waste Water Treatment

CHP

Cumene hydroperoxide

DAA

Diactone alcohol

DCP

Dicumyl peroxide

DiPB

Diisopropylbenzene

DMBA

Dimethyl benzyl alcohol

H2

Hydrogen

H2O

Water

H2O2

Hydrogen peroxide

MOX

Mesityloxide

MAK

Maximale Arbeitsplatzkonzentration

MHP

Methyl hydroperoxide

MP

Melting point

MW

Molecular weight

NaOH

Caustic soda

NaPh

Sodium phenate

NH3

Ammonia

NOx

Nitrogen oxides

N2O

Nitrous oxide

PEL

Permissible exposure limit

SADT

Self-Accelerating-Decomposition-Temperature

TriPB

Triisopropylbenzene

TWA

Time weighted averages (over 8 h)

References

  1. 1.
    Frank HG, Collin G (1968) Steinkohlenteer. Springer, BerlinGoogle Scholar
  2. 2.
    U.S. Pat 644,077 (February 27, 1900)Google Scholar
  3. 3.
    Jordan W, van Barneveld H, Gerlich O, Kleine-Boymann M, Ullrich J (1991) Phenol. In: Ullmann’s encyclopedia of industrial chemistry, 5th edn, VCH, WeinheimGoogle Scholar
  4. 4.
    U.S. Pat 2,727,926 (December 20, 1955)Google Scholar
  5. 5.
    U.S. Pat 2,762,838 (September 11, 1951)Google Scholar
  6. 6.
    Weber M, Weber M, Kleine-Boymann M (2004) Phenol. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, VCH, WeinheimGoogle Scholar
  7. 7.
    Uritarte AK, Rodkin MA, Gross MJ, Kharitonov S, Panov GI (1997). 3rd World Congress on Oxidation Catalysis, San DiegoGoogle Scholar
  8. 8.
    Wright Wytcherley R, Kumar A (2005) Hydrocarbon Processing, December 2005, p 71Google Scholar
  9. 9.
    Lücke B, Martin A (1999). DGMK Conference “The Future Role of Aromatics in Refining and Petrochemistry”, Erlangen (Germany)Google Scholar
  10. 10.
    Orschel M (2000) PhD Thesis, Universität-Gesamthochschule Essen, GermanyGoogle Scholar
  11. 11.
    Reitzmann A (2001) PhD Thesis, Universität Erlangen-Nürnberg, GermanyGoogle Scholar
  12. 12.
    WO Pat 03/042146 A1 (May 22, 2003)Google Scholar
  13. 13.
    Horsley LH (1952, 1962) Azeotropic Data I and II. American Chemical Society, Washington D.C.Google Scholar
  14. 14.
    Naumann HJ, Schaefer H, Oberender H, Timm D, Meye H, Pohl G (1977) Chem. Techn, Heft 1, p 38Google Scholar
  15. 15.
    U.S. 4,092,360 Pat (March 30, 1978)Google Scholar
  16. 16.
    Hock H, Lang S (1944) Ber. Dtsch. Chem. Ges. 77, p 257CrossRefGoogle Scholar
  17. 17.
    Schmidt RJ (2004) Applied Catalysts A: General 280, p 89Google Scholar
  18. 18.
    Emanuel NM (1967) Liquid-Phase Oxidation of Hydrocarbons. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Weber M (2002) Chem. Eng. Technol.. May 2002, p 553Google Scholar
  20. 20.
    Weber M (2006) Process Safety Progress, December 2006, p 327Google Scholar
  21. 21.
    Weber M (2003) Umweltpraxis, September 2003, p 35Google Scholar
  22. 22.
    Gallo JT, Schwartz RJ, Cash J (2002) CEP. September 2002, p 46Google Scholar
  23. 23.
    Kiessling F, Krafft I, Moll KK (1971) Chem. Techn, p 423Google Scholar
  24. 24.
    U.S. Pat 6,555,719 (April 29, 2003)Google Scholar
  25. 25.
    U.S. Pat 2007/0,244,345 A1 (October 18, 2007)Google Scholar
  26. 26.
    Gas production (2006). In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, VCH, WeinheimGoogle Scholar
  27. 27.
    Sasol facts (2008), http://www.sasol.com . Accessed 15 January 2009
  28. 28.
    Chemical Week (2003), July 23, 2003Google Scholar
  29. 29.
    Fiege H (2005) Cresols and Xylenols. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, VCH, WeinheimGoogle Scholar
  30. 30.
    D.E. Pat 2,521,324 (November 27, 1975)Google Scholar
  31. 31.
    D.E. Pat 2,650,416 (November 17, 1976)Google Scholar
  32. 32.
    Schmiedel KW, Decker D (2002) Resorcinol. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, VCH, WeinheimGoogle Scholar
  33. 33.
    Fiege H, Voges HW (2002) Phenol Derivates. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, VCH, WeinheimGoogle Scholar
  34. 34.
    Brandes E, Möller W (2003) Sicherheitstechnische Kenngrößen Vol. 1. Wirtschaftsverlag NW, Bremerhaven, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.INEOS Phenol GmbHGladbeckGermany

Personalised recommendations