A New Feasible Approach to Multi-dimensional Scale Saliency

  • Pablo Suau
  • Francisco Escolano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5807)


In this paper, we present a multi-dimensional extension of an image feature extractor, the scale saliency algorithm by Kadir and Brady. In order to avoid the curse of dimensionality, our algorithm is based on a recent Shannon’s entropy estimator and on a new divergence metric in the spirit of Friedman’s and Rafsky estimation of Henze-Penrose divergence. The experiments show that, compared to our previous existing method based on entropic graphs, this approach remarkably decreases computation time, while not significantly deterioring the quality of the results.


multi-dimensional data scale saliency KD-partition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beirlant, E., Dudewicz, E., Gyrofi, L., Van der Meulen, E.: Nonparametric entropy estimation. International Journal on Mathematical and Statistical Sciences 6(1), 17–39 (1996)MathSciNetGoogle Scholar
  2. 2.
    Bentley, J.L.: K-d trees for semydinamic point sets. In: Proceedings of the 6th Annual ACM Symposium on Computational Geometry, pp. 187–197 (1990)Google Scholar
  3. 3.
    Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)Google Scholar
  4. 4.
    Gilles, S.: Robust Description and Matching of Images. PhD thesis, University of Oxford (1998)Google Scholar
  5. 5.
    Kadir, T., Brady, M.: Scale, Saliency and Image Description. International Journal of Computer Vision 45(2), 83–105 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Kadir, T., Boukerroui, D., Brady, M.: An analysis of the Scale Saliency algorithm, Technical report (2003)Google Scholar
  7. 7.
    Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detection. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical Edge Detection: Learning and Evaluation Edge Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 57–74 (2003)CrossRefGoogle Scholar
  9. 9.
    Laptev, I.: On Space-Time Interest Points. International Journal of Computer Vision 64(2/3), 107–123 (2005)CrossRefGoogle Scholar
  10. 10.
    Leonenko, N., Pronzato, L., Savani, V.: A class of Rényi estimators for multidimensional densities. Annals of Statistics 36(5), 2153–2182 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Liu, C., Yuen, J., Torralba, A.: Dense Scene Aligment Using SIFT Flow for Object Recognition. In: The 2009 IEEE Conference on Computer Vision and Pattern Recognition (to appear, 2009)Google Scholar
  12. 12.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. In: Proceedings of the 13th British Machine Vision Conference, pp. 384–396 (2002)Google Scholar
  14. 14.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  15. 15.
    Neemuchwala, H., Hero, A., Carson, P.: Image registration methods in high-dimensional space. International Journal of Imaging Systems and Technology 16, 130–145 (2006)CrossRefGoogle Scholar
  16. 16.
    Newman, P., Cole, D., Ho, K.: Outdoor SLAM Using Visual Appearance And Laser Ranging. In: Proceedings of the 2006 IIIE International Conference on Robotics and Automation, pp. 1180–1187 (2006)Google Scholar
  17. 17.
    Peñalver, A., Escolano, F., Sáez, J.M.: EBEM: An entropy-based EM algorithm for gaussian mixture models. In: Proceedings of the 18th International Conference on Pattern Recognition (2), pp. 451–455 (2006)Google Scholar
  18. 18.
    Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)CrossRefGoogle Scholar
  19. 19.
    Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: Proceedings of the tenth IEEE International Conference on Computer Vision, vol. 1, pp. 370–377 (2005)Google Scholar
  20. 20.
    Stowell, D., Plumbley, M.D.: Fast multidimensional entropy estimation by K-D partitioning. In: IEEE Signal Processing Letters (To be published)Google Scholar
  21. 21.
    Suau, P., Escolano, F.: Multi-dimensional Scale Saliency Feature Extraction Based on Entropic Graphs. In: Proceedings of the 4th International Symposium on Visual Computing (2), pp. 170–180 (2008)Google Scholar
  22. 22.
    Zhang, M., Lu, Z., Shen, J.: A Robust Salient Region Extraction Based on Color and Texture Features. International Journal of Computer Science 3(3), 142–148 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pablo Suau
    • 1
  • Francisco Escolano
    • 1
  1. 1.Robot Vision Group, Departamento de Ciencia de la Computación e IAUniversidad de AlicanteSpain

Personalised recommendations