Convex Hull-Based Feature Selection in Application to Classification of Wireless Capsule Endoscopic Images

  • Piotr Szczypiński
  • Artur Klepaczko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5807)


In this paper we propose and examine a Vector Supported Convex Hull method for feature subset selection. Within feature subspaces, the method checks locations of vectors belonging to one class with respect to the convex hull of vectors belonging to the other class. Based on such analysis a coefficient is proposed for evaluation of subspace discrimination ability. The method allows for finding subspaces in which vectors of one class cluster and they are surrounded by vectors of the other class. The method is applied for selection of color and texture descriptors of capsule endoscope images. The study aims at finding a small set of descriptors for detection of pathological changes in the gastrointestinal tract. The results obtained by means of the Vector Supported Convex Hull are compared with results produced by a Support Vector Machine with the radial basis function kernel.


Wireless capsule endoscopy feature selection convex hull support vector machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haralick, R.: Statistical and structural approaches to texture. IEEE Proceedings 67(5), 768–804 (1979)CrossRefGoogle Scholar
  2. 2.
    Tuceryan, M., Jain, A.: Texture Analysis. In: The Handbook of Pattern Recogntion and Computer Vision, pp. 207–248. World Scientific Publishing Co., Singapore (1998)Google Scholar
  3. 3.
    Iddan, G., Meron, G., Glukhowsky, A., Swain, P.: Wireless capsule endoscopy. Nature 405(6785), 417–418 (2000)CrossRefGoogle Scholar
  4. 4.
    Swain, P., Fritscher-Ravens, A.: Role of video endoscopy in managing small bowel disease. GUT 53, 1866–1875 (2004)CrossRefGoogle Scholar
  5. 5.
    Coimbra, M., Campos, P., Cunha, J.: Extracting clinical information from endoscopic capsule exams using mpeg-7 visual descriptors. In: The 2nd European Workshop on the Integration of Knowledge, Semantics and Digital Media Technology, EWIMT 2005, pp. 105–110 (2005)Google Scholar
  6. 6.
    Coimbra, M., Cunha, J.: Mpeg-7 visual descriptors–contributions for automated feature extraction in capsule endoscopy. IEEE Transactions on Circuits and Systems for Video Technology 16(5), 628–637 (2006)CrossRefGoogle Scholar
  7. 7.
    Mackiewicz, M., Berens, J., Fisher, M., Bell, G.: Colour and texture based gastrointestinal tissue discrimination. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, May 2006, vol. 2, pp. 597–600 (2006)Google Scholar
  8. 8.
    Mackiewicz, M., Berens, J., Fisher, M.: Wireless capsule endoscopy video segmentation using support vector classifiers and hidden markov models. In: Proceedings of the International Conference on Medical Image Understanding and Analyses (June 2006)Google Scholar
  9. 9.
    Li, B., Meng, M.H.: Ulcer recognition in capsule endoscopy images by texture features. In: 7th World Congress on Intelligent Control and Automation, WCICA 2008, June 2008, pp. 234–239 (2008)Google Scholar
  10. 10.
    Vilarinao, F., Kuncheva, L.I., Radeva, P.: Roc curves and video analysis optimization in intestinal capsule endoscopy. Pattern Recogn. Lett. 27(8), 875–881 (2006)CrossRefGoogle Scholar
  11. 11.
    Szczypinski, P., Sriram, R.D., Sriram, P., Reddy, D.: A model of deformable rings for interpretation of wireless capsule endoscopic videos. Medical Image Analysis 13(2), 312–324 (2009)CrossRefGoogle Scholar
  12. 12.
    Szczypinski, P., Strzelecki, M., Materka, A., Klepaczko, A.: Mazda - a software package for image texture analysis. Computer Methods and Programs in Biomedicine 94, 66–76 (2009)CrossRefGoogle Scholar
  13. 13.
    Szczypinski, P.: (2009), (Visited: April 2009)
  14. 14.
    Nalbantov, G., Groenen, P., Bioch, J.: Nearest convex hull classification. Econometric Institute Report EI 2006-50 Revision_Date: Erasmus University Rotterdam, Econometric Institute (January 2007)Google Scholar
  15. 15.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pudil, P., Somol, P.: Current feature selection techniques in statistical pattern recognition. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems. Advances in Sof. Computing, vol. 30, Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Piotr Szczypiński
    • 1
  • Artur Klepaczko
    • 1
  1. 1.Institute of ElectronicsTechnical University of LodzLodzPoland

Personalised recommendations