Decorrelation and Distinctiveness Provide with Human-Like Saliency

  • Antón Garcia-Diaz
  • Xosé R. Fdez-Vidal
  • Xosé M. Pardo
  • Raquel Dosil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5807)

Abstract

In this work, we show the capability of a new model of saliency, of reproducing remarkable psychophysical results. The model presents low computational complexity compared to other models of the state of the art. It is based in biologically plausible mechanisms: the decorrelation and the distinctiveness of local responses. Decorrelation of scales is obtained from principal component analysis of multiscale low level features. Distinctiveness is measured through the Hotelling’s T2 statistic. The model is conceived to be used in a machine vision system, in which attention would contribute to enhance performance together with other visual functions. Experiments demonstrate the consistency with a wide variety of psychophysical phenomena, that are referenced in the visual attention modeling literature, with results that outperform other state of the art models.

Keywords

saliency bottom-up attention eye-fixations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsotsos, J.K.: Computational foundations for attentive Processes. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 3–7. Elsevier Academia Press, Amsterdam (2005)CrossRefGoogle Scholar
  2. 2.
    Nothdurft, H.C.: Salience of Feature Contrast. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 233–239. Elsevier Academia Press, Amsterdam (2005)CrossRefGoogle Scholar
  3. 3.
    Zetzsche, C.: Natural Scene Statistics and Salient Visual Features. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 226–232. Elsevier Academia Press, Amsterdam (2005)CrossRefGoogle Scholar
  4. 4.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  5. 5.
    Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 802–817 (2006)CrossRefGoogle Scholar
  6. 6.
    Bruce, N., Tsotsos, J.K.: Saliency Based on Information Maximization. Advances in Neural Information Processing Systems 18, 155–162 (2006)Google Scholar
  7. 7.
    Bruce, N., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. Journal of Vision 9(3), 1–24 (2009)CrossRefGoogle Scholar
  8. 8.
    Gao, D., Mahadevan, V., Vasconcelos, N.: On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision 8, 13 (2008)CrossRefGoogle Scholar
  9. 9.
    Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: Proceedings of the Neural Information Processing Systems (NIPS) Conference, Vancouver, Canada (2007)Google Scholar
  10. 10.
    Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. Advances in Neural Information Processing Systems 19, 545–552 (2007)Google Scholar
  11. 11.
    Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Local energy variability as a generic measure of bottom-up salience. In: Yin, P.-Y. (ed.) Pattern Recognition Techniques, Technology and Applications, pp. 1–24. In-Teh, Vienna (2008)Google Scholar
  12. 12.
    Olshausen, B.A., Field, D.J.: How Close Are We to Understanding V1? Neural Computation 17, 1665–1699 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  14. 14.
    Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews. Neuroscience 5(6), 495–501 (2004)CrossRefGoogle Scholar
  15. 15.
    Field, D.J.: Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells. Journal of the Optical Society of America A 4(12), 2379–2394 (1987)CrossRefGoogle Scholar
  16. 16.
    Kovesi, P.: Invariant Measures of Image Features from Phase Information. Ph.D. Thesis, The University or Western Australia (1996)Google Scholar
  17. 17.
    Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: A Phase-Dependent Energy Model. Proceedings of the Royal Society of London B 235, 221–245 (1988)CrossRefGoogle Scholar
  18. 18.
    Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)CrossRefGoogle Scholar
  19. 19.
    Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognition Letters 28, 1151–1155 (2007)CrossRefGoogle Scholar
  20. 20.
    Nothdurft, H.C.: The conspicuousness of orientation and motion contrast. Spatial Vision 7 (1993)Google Scholar
  21. 21.
    Treisman, A., Gormican, S.: Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95, 15–48 (1988)CrossRefGoogle Scholar
  22. 22.
    Rosenholtz, R., Nagy, A.L., Bell, N.R.: The effect of background color on asymmetries in color search. Journal of Vision 4, 224–240 (2004)CrossRefGoogle Scholar
  23. 23.
    Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: Effects of scale and time. Vision Research 45, 643–659 (2005)CrossRefGoogle Scholar
  24. 24.
    Cortes, C., Mohri, M.: Confidence intervals for the area under the ROC curve. In: Advances in Neural Information Processing Systems 17: Proceedings of The 2004 Conference, p. 305. MIT Press, Cambridge (2005)Google Scholar
  25. 25.
    Fawcett, T.: An introduction to ROC analysis. Pattern recognition letters 27, 861–874 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antón Garcia-Diaz
    • 1
  • Xosé R. Fdez-Vidal
    • 1
  • Xosé M. Pardo
    • 1
  • Raquel Dosil
    • 1
  1. 1.Grupo de Visión Artificial, Departamento de Electrónica e ComputaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations