Advertisement

2D Face Recognition in the IV2 Evaluation Campaign

  • Anouar Mellakh
  • Anis Chaari
  • Souhila Guerfi
  • Johan Dhose
  • Joseph Colineau
  • Sylvie Lelandais
  • Dijana Petrovska-Delacrètaz
  • Bernadette Dorizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5807)

Abstract

In this paper, the first evaluation campaign on 2D-face images using the multimodal IV2 database is presented. The five appearance-based algorithms in competition are evaluated on four experimental protocols, including experiments with challenging illumination and pose variabilities. The results confirm the advantages of the Linear Discriminant Analysis (LDA) and the importance of the training set for the Principal Component Analysis (PCA) based approaches. The experiments show the robustness of the Gabor based approach combined with LDA, in order to cope with challenging face recognition conditions. This evaluation shows the interest and the richness of the IV2 multimodal database.

Keywords

Database 2D face recognition evaluation campaign appearance-based algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer, Secaucus (2005)zbMATHGoogle Scholar
  2. 2.
    Phillips, J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: Frvt 2002: Evaluation report. Technical report, NIST (March 2003)Google Scholar
  3. 3.
    Phillips, J., Flynn, P.J.: Overview of the face recognition grand challenge. In: CVPR (June 2005)Google Scholar
  4. 4.
    Jonathon Phillips, P., et al.: Frvt 2006 and ice 2006 large-scale results. Technical report, NIST (March 2007)Google Scholar
  5. 5.
    Website of iv2 project (2006-2007), http://iv2.ibisc.fr/
  6. 6.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  7. 7.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: Recognition using class specific linear projection. In: Proc. of the 4th ECCV, pp. 45–58 (April 1996)Google Scholar
  8. 8.
    Bailly-Bailliére, E., et al.: The banca database and evaluation protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Pentland, A.P., Moghaddam, B., Starner, T.E.: View-based and modular eigenspaces for face recognition. In: CVPR, pp. 84–91 (1994)Google Scholar
  10. 10.
    Swets, D.L., Weng, J(J.): Using discriminant eigenfeatures for image retrieval. IEEE Transactions on PAMI 18(8), 831–836 (1996)CrossRefGoogle Scholar
  11. 11.
    Liu, C.J.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions PAMI 28(5), 725–737 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhou, M., Wei, H.: Face verification using gabor wavelets and adaboost. In: ICPR, pp. I:404–I:407 (2006)Google Scholar
  13. 13.
    Dijana Petrovska Delacretaz, D., Chollet, G., Dorizzi, B.: Guide to Biometric Reference Systems and Performance Evaluation. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Wayman, J.L.: Confidence interval and test size estimation for biometric data. In: Proc. IEEE AutoID 1999, pp. 177–184 (October 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anouar Mellakh
    • 1
  • Anis Chaari
    • 2
  • Souhila Guerfi
    • 2
  • Johan Dhose
    • 3
  • Joseph Colineau
    • 3
  • Sylvie Lelandais
    • 3
  • Dijana Petrovska-Delacrètaz
    • 1
  • Bernadette Dorizzi
    • 1
  1. 1.Institut TELECOMTELECOM & Management SudParisEvryFrance
  2. 2.Laboratoire IBISC-CNRS FRE 3190Université dEvryEvry CedexFrance
  3. 3.THALES, RD 128Palaiseau CedexFrance

Personalised recommendations