Advertisement

Dynamic Texture Extraction and Video Denoising

  • Mathieu Lugiez
  • Michel Ménard
  • Abdallah El-Hamidi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5807)

Abstract

According to recent works, introduced by Y.Meyer [1] the decomposition models based on Total Variation (TV) appear as a very good way to extract texture from image sequences. Indeed, videos show up characteristic variations along the temporal dimension which can be catched in the decomposition framework. However, there are very few works in literature which deal with spatio-temporal decompositions. Thus, we devote this paper to spatio-temporal extension of the spatial color decomposition model. We provide a relevant method to accurately catch Dynamic Textures (DT) present in videos. Moreover, we obtain the spatio-temporal regularized part (the geometrical component), and we distinctly separate the highly oscillatory variations, (the noise). Furthermore, we present some elements of comparison between several models in denoising purpose.

Keywords

Texture Component Decomposition Model Dynamic Texture Image Decomposition Wavelet Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear EvolutionEquations: The fifteenth dean jacqueline B. Lewis Memorial Lectures. American Mathematical Society, Boston (2001)zbMATHGoogle Scholar
  2. 2.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal. Physica D 60, 259–269 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision 67(1), 111–136 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)CrossRefGoogle Scholar
  6. 6.
    Aujol, J.F., Kang, S.H.: Color image decomposition and restoration. J. Visual Communication and Image Representation 17(4), 916–928 (2006)CrossRefGoogle Scholar
  7. 7.
    Vese, L.A., Osher, S.J.: Color texture modeling and color image decomposition in a variational-PDE approach. In: SYNASC, pp. 103–110. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  8. 8.
    Gilles, J.: Noisy image decomposition: A new structure, texture and noise model based on local adaptivity. J. Math. Imaging Vis. 28(3), 285–295 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bresson, X., Chan, T.: Fast minimization of the vectorial total variation norm and applications to color image processing. In: SIAM Journal on Imaging Sciences, SIIMS (submitted 2007)Google Scholar
  10. 10.
    Duval, V., Aujol, J.F., Vese, L.: A projected gradient algorithm for color image decomposition. Technical report, CMLA Preprint 2008-21 (2008)Google Scholar
  11. 11.
    Aubert, G., El-Hamidi, A., Ghannam, C., Ménard, M.: On a class of ill-posed minimization problems in image processing. Journal of Mathematical Analysis and Applications 352(1), 380–399 (2009); Degenerate and Singular PDEs and Phenomena in Analysis and Mathematical PhysicsMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dedeoglu, Y., Toreyin, B.U., Gudukbay, U., Cetin, A.E.: Real-time fire and flame detection in video. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), vol. II, pp. 669–673 (2005)Google Scholar
  13. 13.
    Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In: 4th International Conference on Computer Recognition Systems (CORES 2005), Advances in Soft Computing, Poland, pp. 17–26. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 223–230. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Dubois, S., Lugiez, M., Péteri, R., Ménard, M.: Adding a noise component to a color decomposition model for improving color texture extraction. In: 4th European Conference on Colour in Graphics, Imaging, and Vision. Espagne, Barcelona (2008)Google Scholar
  16. 16.
    Weickert, J., Steidl, G., Mrázek, P., Welk, M., Brox, T.: Diffusion filters and wavelets: What can they learn from each other? In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 3–16. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Chambolle, A.: An algorithm for total variation minimization and its applications. JMIV 20, 89–97 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Péteri, R., Huiskes, M., Fazekas, S.: Dyntex: A comprehensive database of dynamic textures (2008), http://www.cwi.nl/projects/dyntex/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathieu Lugiez
    • 1
    • 2
  • Michel Ménard
    • 1
  • Abdallah El-Hamidi
    • 2
  1. 1.L3i - Université de La RochelleFrance
  2. 2.MIA - Université de La RochelleFrance

Personalised recommendations