Advertisement

Agent-Based Model of Aedes aegypti Population Dynamics

  • Carlos Isidoro
  • Nuno Fachada
  • Fábio Barata
  • Agostinho Rosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5816)

Abstract

The paper presents an agent based model of the Aedes aegypti mosquito and it is focused on simulations of population dynamics and population control strategies. The agents model the main aspects of mosquito’s ecology and behavior, while the environmental components are implemented as layer of dynamic elements obeying to physical laws. The main objective of this approach is to provide realistic simulations of insect biologic control strategies, namely population suppression by releasing large amounts of sterile males, such as Sterile Insect Technique (SIT) or Release of Insects carrying a Dominant Lethal gene (RIDL). Model verification is done through simulations analysis of parameters variation and qualitative assessment with existing models and simulations. The use of LAIS simulator proved to be a valuable tool allowing efficient agent based modeling (ABM) and simulations deployment and analysis.

Keywords

Artificial Life Agent Based Modelling Aedes aegypti Dengue RIDL SIT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Senior, K.: Climate change and infectious disease: a dangerous liaison. The Lancet Infectious Diseases 8(2), 92–93 (2008)CrossRefGoogle Scholar
  2. 2.
    Ross, R.: The Prevention of Malaria (1911)Google Scholar
  3. 3.
    Macdonald, G.: The analysis of equilibrium in malaria. Trop Dis Bull 49(9), 813–829 (1952)Google Scholar
  4. 4.
    Macdonald, G.: The epidemiology and control of malaria (1957)Google Scholar
  5. 5.
    Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: model development. Journal of Medical Entomology 32(2), 83–97 (1995)CrossRefGoogle Scholar
  6. 6.
    Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: sensitivity analysis. Journal of medical entomology 32(2), 98–106 (1995)CrossRefGoogle Scholar
  7. 7.
    Alto, B., Juliano, S.: Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of medical entomology 38(5), 646–656 (2001)CrossRefGoogle Scholar
  8. 8.
    Ahumada, J., Lapointe, D., Samuel, M.: Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. Journal of medical entomology 41(6), 1157–1170 (2004)CrossRefGoogle Scholar
  9. 9.
    Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 1. Analysis of the literature and model development. Journal of Medical Entomology 30, 1003–1017 (1993)CrossRefGoogle Scholar
  10. 10.
    Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 2. Simulation results and validation. Journal of Medical Entomology 30, 1018–1028 (1993)CrossRefGoogle Scholar
  11. 11.
    Deng, C., Tao, H., Ye, Z.: Agent-based modeling to simulate the dengue spread.  7143, 714310 (2008)Google Scholar
  12. 12.
    Thomas, D., Donnelly, C., Wood, R., Alphey, L.: Insect population control using a dominant, repressible, lethal genetic system. Science 287(5462), 2474–2476Google Scholar
  13. 13.
    Atkinson, M., Su, Z., Alphey, N., Alphey, L., Coleman, P., Wein, L.: Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proceedings of the National Academy of Sciences 104(22), 9540–9546 (2007)CrossRefGoogle Scholar
  14. 14.
    Esteva, L., Mo Yang, H.: Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical biosciences 198(2), 132–147 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, J.: Simple mathematical models for interacting wild and transgenic mosquito populations. Mathematical biosciences 189(1), 39–59 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maiti, A., Patra, B., Samanta, G.: Sterile insect release method as a control measure of insect pests: A mathematical model. Journal of Applied Mathematics and Computing 22(3), 71–86 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems 14(1), 87–116 (2007)CrossRefGoogle Scholar
  18. 18.
    Fachada, N.: Agent-based Simulation of the Immune System. Master’s thesis, Instituto Superior Técnico, Lisboa (July 2008)Google Scholar
  19. 19.
    Ferreira, C., Yang, H., Esteva, L.: Assessing the suitability of sterile insect technique applied to Aedes aegypti. Journal of Biological Systems 16(4), 565–577 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlos Isidoro
    • 1
  • Nuno Fachada
    • 1
  • Fábio Barata
    • 1
  • Agostinho Rosa
    • 1
  1. 1.Evolutionary System and Biomedical Engineering LabSystems and Robotics Institute Instituto Superior TécnicoLisboaPortugal

Personalised recommendations