Individual Identification Using Gait Sequences under Different Covariate Factors

  • Yogarajah Pratheepan
  • Joan V. Condell
  • Girijesh Prasad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5815)

Abstract

Recently, gait recognition for individual identification has received increased attention from biometrics researchers as gait can be captured at a distance using low-resolution capturing device. Human gait properties can be affected by different clothing and carrying objects (i.e. covariate factors). Most of the literature shows that these covariate factors give difficulties for individual identification based on gait. In this paper, we propose a novel method that generates dynamic and static feature templates of the sequences of silhouette images (Dynamic Static Silhouette Templates (DSSTs)) to overcome this issue. Here the DSST is calculated from Motion History Images (MHIs). The experimental results show that our method overcomes issues arising from differing clothing and the carrying of objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Joint Surg. 46 A(2), 335–360 (1964)Google Scholar
  2. 2.
    Cutting, J., Kozlowski, L.: Recognizing friends by their walk: gait perception without familiarity cues, Bull. Psychon. Soc. 9(5), 353–356 (1977)Google Scholar
  3. 3.
    Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and Dynamic body biometrics for Gait Recognition. IEEE Transcations on Circuits and Systems for Video Technology 14(2), 149–158 (2004)CrossRefGoogle Scholar
  4. 4.
    Cutting, J.E., Proffitt, D.: Gait Perception as an Example of How we may Perceive Events. Intersensory per. and sensory integration, 249–273 (1981)Google Scholar
  5. 5.
    Stevenage, S.V., Nixon, M.S., Vince, K.: Visual Analysis of Gait as a Cue to Identity. Applied Cognitive Psychology 13(6), 513–526 (1999)CrossRefGoogle Scholar
  6. 6.
    Lam, T., Lee, R., Zhang, D.: Human gait recognition by the fusion of motion and static spatio-temporal templates. Pattern Recognition 40(9), 2563–2573 (2007)MATHCrossRefGoogle Scholar
  7. 7.
    Veres, G.V., Nixon, M.S., Carter, J.N.: Modelling the Time-Variant Covariates for Gait Recognition. In: Proc. of 5th Intl. Conf. on Audio-and Video-Based Biometric Person Authentication, pp. 597–606 (2005)Google Scholar
  8. 8.
    Wagg, D.K., Nixon, M.S.: On Automated Model-Based Extraction and Analysis of Gait. In: Proc. of Conf. Automatic Face and Gesture Recognition, pp. 11–16 (2004)Google Scholar
  9. 9.
    Bouchrika, I., Nixon, M.: Exploratory Factor Analysis of Gait Recognition. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–6 (2008)Google Scholar
  10. 10.
    Wang, L., Tan, T.N., Hu, W.M., Ning, H.Z.: Automatic Gait Recognition Based on Statistical Shape Analysis. IEEE Trans. on Image Processing 12(9), 1120–1131 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Foster, J.P., Nixon, M.S., Prügel-Bennett, A.: Automatic gait recognition using area-based metrics. Pattern Recognition Lett. 24, 2489–2497 (2003)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Tan, T.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. PAMI 25(12), 1505–1518 (2003)Google Scholar
  13. 13.
    Haritaoglu, I., Cutler, R., Harwood, D., Davis, L.S.: Backpack: detection of people carrying objects using silhouettes. In: Proc. of Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 102–107 (1999)Google Scholar
  14. 14.
    Weiming, H., Min, H., Xue, Z., Tieniu, T., Jianguang, L., Maybank, S.: Principal axis-based correspondence between multiple cameras for people tracking. In: IEEE Transactions Pattern Analysis and Machine Intelligence, pp. 663–671 (2006)Google Scholar
  15. 15.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1999), vol. 2, pp. 246–252 (1999)Google Scholar
  16. 16.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. PAMI 27(2), 162–177 (2005)Google Scholar
  17. 17.
    Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transaction on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)CrossRefGoogle Scholar
  18. 18.
    Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8(6), 679–698 (1986)Google Scholar
  19. 19.
    Felzenszwalb, P.F.: Learning Models for Object Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1056–1062 (2001)Google Scholar
  20. 20.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Education, London (2003)Google Scholar
  21. 21.
    Gunn, S.R.: Support Vector Machines for Classification and Regression. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton, pp. 1–66 (May 1998)Google Scholar
  22. 22.
    Shutler, J.D., Grant, M.G., Nixon, M.S., Carter, J.N.: On a large sequence-Based Human Gait Database. In: Proc. 4th International Conference on Recent Advances in Soft Computing, Nottingham (UK), pp. 66–71 (2002)Google Scholar
  23. 23.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yogarajah Pratheepan
    • 1
  • Joan V. Condell
    • 1
  • Girijesh Prasad
    • 1
  1. 1.School of Computing and Intelligent SystemsUniversity of UlsterUK

Personalised recommendations