A Computer Vision System for Visual Grape Grading in Wine Cellars

  • Esteban Vazquez-Fernandez
  • Angel Dacal-Nieto
  • Fernando Martin
  • Arno Formella
  • Soledad Torres-Guijarro
  • Higinio Gonzalez-Jorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5815)

Abstract

This communication describes a computer vision system for automatic visual inspection and classification of grapes in cooperative wine cellars. The system is intended to work outdoors, so robust algorithms for preprocessing and segmentation are implemented. Specific methods for illumination compensation have been developed. Gabor filtering has been used for segmentation. Several preliminary classification schemes, using artificial neural networks and Random Forest, have also been tested. The obtained results show the benefits of the system as a useful tool for classification and for objective price fixing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brosnan, T., Sun, D.W.: Improving Quality Inspection of Food Products by Computer Vision - A Review. Journal of Food Engineering 61, 3–16 (2004)CrossRefGoogle Scholar
  2. 2.
    Du, D.W., Sun, D.W.: Learning Techniques Used in Computer Vision for Food Quality evaluation: A Review. Journal of Food Engineering 72, 39–55 (2006)CrossRefGoogle Scholar
  3. 3.
    JAI - Industrial CCD/CMOS cameras, http://www.jai.com
  4. 4.
    Hornberg, A.: Handbook of Machine Vision. Wiley VCH, Weinhiem (2006)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Media, Sebastopol (2008)Google Scholar
  7. 7.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)CrossRefGoogle Scholar
  8. 8.
    Martin, F.: Analysis Tools for Gray Level Histograms. In: Proc. of SPPRA-2003, pp. 11–16 (June 2003)Google Scholar
  9. 9.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Russ, J.C.: The Image Processing Handbook, 5th edn. CRC Press, Boca Raton (2007)Google Scholar
  11. 11.
    Jain, A.K., Karu, K.: Learning Texture Discrimination Masks. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 195–205 (1994)CrossRefGoogle Scholar
  12. 12.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    Kerschen, G., Golinval, J.C.: Non-linear Generalization of Principal Component Analysis: From a Global to a Local Approach. Journal of Sound and Vibration 254(5), 867–876 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Esteban Vazquez-Fernandez
    • 1
  • Angel Dacal-Nieto
    • 1
  • Fernando Martin
    • 2
  • Arno Formella
    • 3
  • Soledad Torres-Guijarro
    • 1
  • Higinio Gonzalez-Jorge
    • 1
  1. 1.Laboratorio Oficial de Metroloxía de Galicia (LOMG)Parque Tecnolóxico de GaliciaOurenseSpain
  2. 2.Communications and Signal Theory DepartmentUniversity of VigoSpain
  3. 3.Computer Science DepartmentUniversity of VigoSpain

Personalised recommendations