Advertisement

GPU-Accelerated Nearest Neighbor Search for 3D Registration

  • Deyuan Qiu
  • Stefan May
  • Andreas Nüchter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5815)

Abstract

Nearest Neighbor Search (NNS) is employed by many computer vision algorithms. The computational complexity is large and constitutes a challenge for real-time capability. The basic problem is in rapidly processing a huge amount of data, which is often addressed by means of highly sophisticated search methods and parallelism. We show that NNS based vision algorithms like the Iterative Closest Points algorithm (ICP) can achieve real-time capability while preserving compact size and moderate energy consumption as it is needed in robotics and many other domains. The approach exploits the concept of general purpose computation on graphics processing units (GPGPU) and is compared to parallel processing on CPU. We apply this approach to the 3D scan registration problem, for which a speed-up factor of 88 compared to a sequential CPU implementation is reported.

Keywords

NNS GPGPU ICP 3D registration SIMD MIMD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arya, S., Mount, D.M.: Algorithms for Fast Vector Quantization. In: Proc. Data Compression Conference, pp. 381–390. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  2. 2.
    Bustos, B., Deussen, O., Hiller, S., Keim, D.: A Graphics Hardware Accelerated Algorithm for Nearest Neighbor Search. In: Proc. of the 6th Int. Conf. on Computational Science, pp. 196–199 (May 2006)Google Scholar
  3. 3.
    Foley, T., Sugerman, J.: KD-Tree Acceleration Structures for a GPU Raytracer. In: Graphics Hardware, pp. 15–22 (July 2005)Google Scholar
  4. 4.
    Garcia, V., Debreuve, E., Barlaud, M.: Fast k Nearest Neighbor Search using GPU. In: Proc. Comp. Vision and Pattern Recognition Workshops (CVPRW), pp. 1–6 (June 2008)Google Scholar
  5. 5.
    Horn, D.R., Sugerman, J., Houston, M., Hanrahan, P.: Interactive k-D Tree GPU Raytracing. In: Proc. Symp. on Interactive 3D graphics and games, pp. 167–174 (April 2007)Google Scholar
  6. 6.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. AK Peters (July 2001)Google Scholar
  8. 8.
    Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A Fast Similarity Join Algorithm Using Graphics Processing Units. In: Proc. of the 24th IEEE International Conference on Data Engineering, pp. 1111–1120 (May 2008)Google Scholar
  9. 9.
    Nüchter, A.: Parallelization of Scan Matching for Robotic 3D Mapping. In: Proceedings of the 3rd European Conference on Mobile Robots (September 2007)Google Scholar
  10. 10.
    Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6D SLAM with Approximate Data Association. In: Proc. of the 12th IEEE International Conference on Advanced Robotics (ICAR), pp. 242–249 (July 2005)Google Scholar
  11. 11.
    nVidia. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. nVidia, version 2.0 edn. (June 2008)Google Scholar
  12. 12.
    Purcell, T.J., Donner, C., Cammarano, M., Jensen, H.W., Hanrahan, P.: Photon Mapping on Programmable Graphics Hardware. In: Doggett, M., Heidrich, W., Mark, W., Schillin, A. (eds.) Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware (2003)Google Scholar
  13. 13.
    Rozen, T., Boryczko, K., Alda, W.: GPU bucket sort algorithm with applications to nearest-neighbour search. In: Journal of the 16th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision (February 2008)Google Scholar
  14. 14.
    Singh, S., Faloutsos, P.: SIMD Packet Techniques for Photon Mapping. In: Proc. of the IEEE/EG Symposium on Interactive Ray Tracing, pp. 87–94 (September 2007)Google Scholar
  15. 15.
    van Kooten, K., van den bergen, G., Telea, A.: GPU Gems 3, ch. 7, pp. 123–148. Addison Wesley Professional, Reading (2007)Google Scholar
  16. 16.
    Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-Time KD-Tree Construction on Graphics Hardware. In: SIGGRAPH Asia 2008, p. 10 (April 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Deyuan Qiu
    • 1
  • Stefan May
    • 2
  • Andreas Nüchter
    • 3
  1. 1.University of Applied Sciences Bonn-Rhein-SiegSankt AugustinGermany
  2. 2.INRIASophia-AntipolisFrance
  3. 3.Jacobs University BremenGermany

Personalised recommendations