Advertisement

A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching

  • Stefan K. Gehrig
  • Felix Eberli
  • Thomas Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5815)

Abstract

Many real-time stereo vision systems are available on low-power platforms. They all either use a local correlation-like stereo engine or perform dynamic programming variants on a scan-line. However, when looking at high-performance global stereo methods as listed in the upper third of the Middlebury database, the low-power real-time implementations for these methods are still missing. We propose a real-time implementation of the semi-global matching algorithm with algorithmic extensions for automotive applications on a reconfigurable hardware platform resulting in a low power consumption of under 3W. The algorithm runs at 25Hz processing image pairs of size 750x480 pixels and computing stereo on a 680x400 image part with up to a maximum of 128 disparities.

Keywords

Stereo Vision External Memory Stereo Match Stereo Camera Stereo Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scharstein, D., Szeliski, R.: Middlebury stereo vision and evaluation page, http://vision.middlebury.edu/stereo
  2. 2.
    Hirschmueller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of Int. Conference on Computer Vision and Pattern Recognition 2005, San Diego, CA, vol. 2, pp. 807–814 (June 2005)Google Scholar
  3. 3.
    Konolige, K.: Small vision systems. In: Proceedings of the International Symposium on Robotics Research, Hayama, Japan (1997)Google Scholar
  4. 4.
    Woodfill, J.I., et al.: The tyzx deepsea g2 vision system, a taskable, embedded stereo camera. In: Embedded Computer Vision Workshop, pp. 126–132 (2006)Google Scholar
  5. 5.
    Masrani, D.K., MacLean, W.J.: A real-time large disparity range stereo-system using fpgas. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 42–51. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Sabihuddin, S., MacLean, W.J.: Maximum-likelihood stereo correspondence using field programmable gate arrays. In: Int. Conference on Computer Vision Systems (ICVS), Bielefeld, Germany (March 2007)Google Scholar
  7. 7.
    Tech-News: Toyota’ lexus ls 460 employs stereo camera (viewed 2009/04/15), http://techon.nikkeibp.co.jp/english/NEWS_EN/20060301/113832/
  8. 8.
    Sarnoff-Inc.: The acadia video processors - acadia pci (viewed 2009/07/15), http://www.sarnoff.com/products/acadia-video-processors/acadia-pci
  9. 9.
    MobilEye: Eye q2 system - vision system on a chip (viewed 2009/07/15), http://www.mobileye.com/manufacturer-products/brochures
  10. 10.
    Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the gpu. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Yang, Q.: Real-time global stereo matching using hierarchical belief propagation. In: British Machine Vision Conference (BMVC), pp. 989–998 (September 2006)Google Scholar
  12. 12.
    Hirschmueller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceedings of Int. Conference on Computer Vision and Pattern Recognition 2007, Minneapolis, Minnesota (June 2007)Google Scholar
  13. 13.
    Hirschmueller, H., Gehrig, S.: Stereo matching in the presence of sub-pixel calibration errors. In: Proceedings of Int. Conference on Computer Vision and Pattern Recognition 2009, Miami, FL (June 2009)Google Scholar
  14. 14.
    Shimizu, M., Okutomi, M.: An analysis of subpixel estimation error on area-based image matching. In: DSP 2002, pp. 1239–1242 (2002)Google Scholar
  15. 15.
    Steingrube, P., Gehrig, S.: Performance evaluation of stereo algorithms for automotive applications. In: ICVS 2009 (October 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan K. Gehrig
    • 1
  • Felix Eberli
    • 2
  • Thomas Meyer
    • 2
  1. 1.Daimler AG Group ResearchSindelfingenGermany
  2. 2.Supercomputing Systems AGZuerichSwitzerland

Personalised recommendations