Modelling Regional Climate Change in Southwest Germany

  • Hans-Jürgen Panitz
  • Gerd Schädler
  • Hendrik Feldmann
Conference paper

Abstract

In its Fourth Assessment Report (AR4) the Intergovernmental Panel on Climate Change (IPCC) states that it is very likely that many land regions, especially on the Northern Hemisphere, will warm during the 21st century due to the general climate change, which itself is caused by the increase of anthropogenic greenhouse gases [7]. On the global scale the IPCC estimates that for the next two decades a warming of about 0.2 C per decade can be expected on the basis of the SRES (Special Reports on Emission Scenarios, [11]) emission scenarios. Even if the concentrations of all greenhouse gases were kept at the year 2000 level, a further warming of about 0.1 C per decade can be expected. For many land regions of the globe it is estimated that the annual mean temperature increase will be higher than the global mean. This variability of climatic change persists over all scales, from global to regional, and more or less for all climatological observables. On the spatial scale of global climate models (about 200 km) for example, the largest warming in Europe is likely to happen in the northern part in winter and in the Mediterranean area in summer [2]. Annual precipitation is very likely to increase in most of northern Europe and decrease in most of the Mediterranean area. In Central Europe, precipitation is likely to increase in winter but decrease in summer, but the agreement between the results of various models is quite low there. Extremes of daily precipitation are very likely to increase throughout Europe [1]; compared to Northern and Southern Europe, however, climatic change for Central Europe is more difficult to assess due to sometimes conflicting tendencies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Boberg, P. Berg, P. Thejll, W. J. Gutowski, and J. H. Christensen (2008): Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble, Clim. Dyn., doi:10.1007/s00382-008-0446-y.
  2. 2.
    J.H. Christensen, B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, and P. Whetton (2007): Regional Climate Projections, in: Climate Change 2007: The Physical Science Basis.Contribution of Working GroupI to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, and M. Tignor, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA Google Scholar
  3. 3.
    G. Doms, and U. Schättler (2002) A description of the nonhydrostatic regional model LM, Part I: Dynamics and Numerics. COSMO Newsletter, 2, pp. 225–235. Google Scholar
  4. 4.
    H.Feldmann, B. Früh, G. Schädler, H.-J. Panitz, K. Keuler, D. Jacob, and Ph. Lorenz (2008): Evaluation of the Precipitation for Southwest Germany from High Resolution Simulations with Regional Climate Models. Meteorologische Zeitschrift, 17, 455–465. CrossRefGoogle Scholar
  5. 5.
    M. R. Haylock, N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New (2008): A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res., 113, D20119, doi: 10.1029/2008JD010201. CrossRefGoogle Scholar
  6. 6.
    H.-D. Hollweg, U. Böhm, I. Fast, B. Hennemuth, K. Keuler, E. Keup-Thiel, M. Lautenschlager, St. Legutke, K. Radtke, B. Rockel, M.Schubert, A. Will, M. Woldt, and C. Wunram (2008): Ensemble Simulations over Europe with the Regional Climate Model CLM forced with IPCC AR4 Global Scenarios. Technical Report No.3, pp 152Model & Data GroupMax Planck Institute for Meteorology, Hamburg, http://www.mad.zmaw.de/projects-at-md/sg-adaptation, ISSN 1619-2257
  7. 7.
    IPCC (2007) Summary for Policymakers, in: Climate Change 2007: The Physical Science Basis.Contribution of Working GroupI to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, and M. Tignor, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA Google Scholar
  8. 8.
    D. Jacob, H. Göttel, S. Kotlarski, Ph. Lorenz, and K. Sieck (2008): Klimaauswirkungen und Anpassung in Deutschland? Phase 1: Erstellung regionaler Klimaszenarien für Deutschland.a Abschlussbericht zum UFOPLAN-Vorahben 204 41 138. pp 154, Umweltbundesamt, Dessau-Roßlau, www.umweltbundesamt.de, ISSN 1862-4359
  9. 9.
    T. N. Krishnamurti, and L. Bounoua (1996): An Intorduction to Numerical Weather Prediction Techniques. CRC Press, Boca Raton, London, New York, Washington D.C., pp 291, ISBN 0-8493-8910-0. Google Scholar
  10. 10.
    C. Meissner, and G. Schädler (2007): Modelling the Regional Climate of Southwest Germany: Sensitivity to Simulation Setup, in: High Performance Computing in Science and Engineering ’07. Eds. W. E. Nagel, D. Kröner, and M. Resch, ISBN 978-3-540-74738-3, Springer Berlin Heidelberg New York. Google Scholar
  11. 11.
    N. Nakicenovic et al.(2000). Special Report on Emissions Scenarios: A SpecialReport of Working GroupIII of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm Google Scholar
  12. 12.
    E. Röckner (2005a): PCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. CERA-DB “EH5-T63L31_OM_20C3M_1_6H” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5-T63L31_OM_20C3M_1_6H
  13. 13.
    E. Röckner (2005b): IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. CERA-DB “EH5-T63L31_OM_20C3M_3_6H” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5-T63L31_OM_20C3M_1_6H
  14. 14.
    E. Röckner, M. Lautenschlager, H. Schneider (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H
  15. 15.
    E. Röckner, M. Lautenschlager, H. Schneider (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H
  16. 16.
    A. J. Simmons, J. K. Gibson (2000): The ERA-40 Project Plan. ERA-40 Project Report Series, 1, 62 p Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Jürgen Panitz
    • 1
  • Gerd Schädler
  • Hendrik Feldmann
  1. 1.Institut für Meteorologie und KlimaforschungForschungszentrum Karlsruhe/Universität KarlsruheKarlsruheGermany

Personalised recommendations